Answer:
6.39 J of energy is needed to generate 0.71 * 10⁻¹⁶ kg mass
Explanation:
According to the Equation: E = mc²
where the mass, m = 0.71 * 10⁻¹⁶ kg
the speed of light, c = 3 * 10⁸ m/s
The amount of energy needed to generate a mass of 0.71 * 10⁻¹⁶ kg is calculated as follows:
E = (0.71 * 10⁻¹⁶) (3 * 10⁸)²
E = 0.71 * 10⁻¹⁶ * 9 * 10¹⁶
E = 0.71 * 9
E = 6.39 J
Answer:
The density of the woman is 950.8 kg/m³
Explanation:
Given;
fraction of the woman's volume above the surface = 4.92%
then, fraction of the woman's volume below the surface = 100 - 4.92% = 95.08%
the specific gravity of the woman 
The density of the woman is calculate as;

Density of fresh water = 1000 kg/m³
Density of the woman = 0.9508 x 1000 kg/m³
Density of the woman = 950.8 kg/m³
Therefore, the density of the woman is 950.8 kg/m³
Answer:
It's actually
F=ma
Force=Mass x Acceleration
So...when we inverse it..
It becomes:
B. a= F/m