Answer:
a) puck is subjected to both the forces of the hockey sticks in a horizontal direction,
b)the puck does not move since the sum of the forces is zero
c) changing the magnitude or direction of its applied force
Explanation:
a) The puck is subjected to both the forces of the hockey sticks in a horizontal direction, these forces are of equal magnitude and opposite direction since the puck is at rest.
In the direction of the y-axis (perpendicular to the ice) you have the weight of the disk and the normal to this weight that are also in equilibrium.
b) the puck does not move since the sum of the forces is zero, which implies that the forces of the hockey sticks are of equal magnitude and opposite direction.
c) the player has several ways to make the puck move
* slightly changing the angle of the club and therefore the direction of the force, in this case the disc comes out in the direction of this component
* inclined the stick slightly so that the force has a vertical component and the puck jumps in this direction
* Increasing the magnitude of the force so that the puck comes out in the opposite direction to the player
* The worst case, decreasing its force to zero and the disk comes out in its direction by the other force that had the same magnitude.
This took me a short while to figure out, but I am still not entirely sure if this is correct, this is just from my basic understanding of Newtons Second Law of Motion.
You have a 4kg cart with a force of 20N acting on it.
The formula for working out the acceleration is.
a=Fnet÷mass
Substitute in the information.
a=20N÷4kg
Now you solve it to give you.
a=5m/s
So now what you should be able to do is figure out that after 10 seconds the cart travelling at 5m/s would have travelled 10 metres.
This is achieved by finding out how many 5's go into 10 which is 2.
So you do 5×2 which equals 10.
The 4kg cart has travelled 10 meters in 10 seconds with a force of 20N acting upon it.
I hope that this has helped you.
Answer:
600 mC
Explanation:
The charge of an electron is 1.6 x 10-19C so for a current with 10 mA, the charge going to screen in one second is 10 mC
so number of electrons, n = (10 x 10-3)/(1.6 x 10-19) = 6.25 x 1016 so in a minute the charge is 10 * 60 = 600 mC
Total energy of an orbiting satellite is negative of Its [Kinetic energy].
The positively charged atmosphere attracts negatively charged spider silk, might electrostatic force play in spider dispersal, according to a recent study.
Answer: Option C
<u>Explanation:</u>
The positive charge present in upper of the atmosphere and the negative charge on planet’s surface. During cloudless skies days, the air possesses a voltage of nearly around 100 volts for each and every meter from above the ground.
Ballooning spiders process within this planetary electric field. When their silk relieve their bodies then it picks up a negative charge. This oppose the similar negative charges on the surfaces on which the spiders settles and create sufficient force to lift them into the air. And spiders can hike those forces by climbing onto blades of grass,twigs, or leaves.