Answer:
here
Explanation:
0.000141 to kilowatt-hours. hope this helped
Answer:
4960000000 pm
Explanation:
4.96*1000000000= 4960000000
Answer:
c ) protons and neutrons
Explanation:
Protons and neutrons have approximately the same mass, but they are both much more massive than electrons (approximately 2,000 times as massive as an electron). The positive charge on a proton is equal in magnitude to the negative charge on an electron.
Answer:
1. Number of gas particles (atoms or molecules)
2. Number of moles of gas
3. Average kinetic energy
Explanation:
Since the two gas has the same volume and are under the same conditions of temperature and pressure,
Then:
1. They have the same number of mole because 1 mole of any gas at stp occupies 22.4L. Now both gas will occupy the same volume because they have the same number of mole
2. Since they have the same number of mole, then they both contain the same number of molecules as explained by Avogadro's hypothesis which states that at the same temperature and pressure, 1 mole of any substance contains 6.02x10^23 molecules or atoms.
3. Being under the same conditions of temperature and pressure, they both have the same average kinetic energy. The kinetic energy of gas is directly proportional to the temperature. Now that both gas are under same temperature, their average kinetic energy are the same.
Answer:
108.43 grams KNO₃
Explanation:
To solve this problem we use the formula:
Where
- ΔT is the temperature difference (14.5 K)
- Kf is the cryoscopic constant (1.86 K·m⁻¹)
- b is the molality of the solution (moles KNO₃ per kg of water)
- and<em> i</em> is the van't Hoff factor (2 for KNO₃)
We <u>solve for b</u>:
- 14.5 K = 1.86 K·m⁻¹ * b * 2
Using the given volume of water and its density (aprx. 1 g/mL) we <u>calculate the necessary moles of KNO₃</u>:
- 275 mL water ≅ 275 g water
- moles KNO₃ = molality * kg water = 3.90 * 0.275
- moles KNO₃ = 1.0725 moles KNO₃
Finally we <u>convert KNO₃ moles to grams</u>, using its molecular weight:
- 1.0725 moles KNO₃ * 101.103 g/mol = 108.43 grams KNO₃