False. The principle states that the buoyant force on an object is equal to the weight of the fluid displaced by the object.
<h3>What is Archimedes' principle?</h3>
It is a theory propounded by Archimedes. It opines that a floating body is acted upon by a buoyant force.
The buoyant force is the same as the weight of the fluid displaced by the floating body.
Thus, instead of saying 'the buoyant force is equal to the blank of the fluid displaced', it is actually 'the buoyant force is equal to the weight of the fluid displaced'.
More on Archimedes' principle can be found here: brainly.com/question/13106989
#SPJ1
This problem is providing us with the mass of propane, its enthalpy of combustion, and the initial and final temperature of water that can be heated from the burning of this fuel. At the end, the result turns out to be 42.27 L.
<h3>Combustion:</h3>
In chemistry, combustion reactions are based on the burning of fuels by using oxygen and producing both carbon dioxide and water. For propane, we will have:

Hence, we can calculate the heat released from this reaction by using the mass, which has to be converted to moles, and the given enthalpy of combustion:

<h3>Calorimetry:</h3>
In chemistry, we can analyze the mass-specific heat-temperature-heat relationship via the most general heat equation:

Thus, since Q was obtained from the previous problem, but the sign change because the released heat is now absorbed by the water, one can calculate the mass of water that rises from 20.0°C to 100.0°C with this heat:

Finally, we convert it to liters as required:

Learn more about calorimetry: brainly.com/question/1407669
Explanation:
i don't understood your question ⁉️
and what do u mean by my color is sickle
The integrated rate law expression for a first order reaction is
![ln\frac{[A_{0}]}{[A_{t}]}=kt](https://tex.z-dn.net/?f=ln%5Cfrac%7B%5BA_%7B0%7D%5D%7D%7B%5BA_%7Bt%7D%5D%7D%3Dkt)
where
[A0]=100
[At]=6.25
[6.25% of 100 = 6.25]
k = 9.60X10⁻³s⁻¹
Putting values

taking log of 100/6.25
100/6.25 = 16
ln(16) = 2.7726
Time = 2.7726 / 0.0096 = 288.81 seconds
Given what we know, we can confirm that if you aimed light from the magenta part of the Horsehead Nebula through a spectrograph we would be able to determine more precisely the structure and details of the cloud.
<h3>How do we use Spectrums in order to understand stars?</h3>
The spectrums recorded by scientists, such as those of stars or nebulas like the horsehead nebula can tell us a great deal about the composition of said entities. Studying the spectrum can tell scientists about the chemical composition of stars or nebulas, such as information about the elements that form them, like their temperatures and densities.
<h3 /><h3>How would a discontinuous emission of hydrogen gas look in the spectrum?</h3>
This would appear as pauses in the lines of the spectrum. If the emission of the hydrogen gas were constant, there would be a continuous line on the spectrum graph to indicate the illuminated hydrogen, though if this line were discontinuous, we would be able to assume that its source is emission from another gas instead.
Therefore, we can confirm that spectrography is an essential part of scientific discovery pertaining to our universe. It allows us to study the chemical composition of stars and nebulas, and determine the sources of certain emissions like that of hydrogen gases.
To learn more about spectrographs visit:
brainly.com/question/15290407?referrer=searchResults