The given sentence is part of a longer question.
I found this question with the same sentence. So, I will help you using this question:
For the reaction N2O4<span>(g) ⇄ 2NO</span>2(g), a reaction mixture at a certain temperature initially contains both N2O4 and NO2 in their standard states (meaning they are gases with a pressure of 1 atm<span>). If </span>Kp = 0.15, which statement is true of the reaction mixture before
any reaction occurs?
(a) Q = K<span>; The reaction </span>is at equilibrium.
(b) Q < K<span>;
The reaction </span>will proceed to
the right.
(c) Q > K<span>; The reaction </span>will proceed to the left.
The answer is the option (c) Q > K<span>; The reaction will proceed to the </span>left,
since Qp<span> = </span>1<span>, and 1 > 0.15.</span>
Explanation:
Kp is the equilibrium constant in term of the partial pressures of the gases.
Q is the reaction quotient. It is a measure of the progress of a chemical reaction.
The reaction quotient has the same form of the equilibrium constant but using the concentrations or partial pressures at any moment.
At equilibrium both Kp and Q are equal. Q = Kp
If Q < Kp then the reaction will go to the right (forward reaction) trying to reach the equilibrium,
If Q > Kp then the reaction will go to the left (reverse reaction) trying to reach the equilibrium.
Here, the state is that both pressures are 1 atm, so Q = (1)^2 / 1 = 1.
Since, Q = 1 and Kp = 0.15, Q > Kp and the reaction will proceed to the left.
Step 1 - Discovering the ionic formula of Chromium (III) Carbonate
Chromium (III) Carbonate is formed by the ionic bonding between Chromium (III) (Cr(3+)) and Carbonate (CO3(2-)):

Step 2 - Finding the molar mass of the substance
To find the molar mass, we need to multiply the molar mass of each element by the number of times it appears in the formula of the substance and, finally, sum it all up.
The molar masses are 12 g/mol for C; 16 g/mol for O and 52 g/mol for Cr. We have thus:

The molar mass will be thus:

Step 3 - Finding the percent composition of carbon
As we saw in the previous step, the molar mass of Cr2(CO3)3 is 284 g/mol. From this molar mass, 36 g/mol come from C. We can set the following proportion:

The percent composition of Carbon is thus 12.7 %.
A rock is definitely more dense. If you were to put a cloud in water it would float/stay above it and a rock would sink to the bottom
Answer:
New volume is 25.0 mL
Explanation:
Let's assume the gas sample behaves ideally.
According to combined gas law for an ideal gas-

where,
and
represent initial and final pressure respectively
and
represent initial and final volume respectively
and
represent initial and final temperature (in kelvin) respectively
Here,
,
,
and 
So, 
So, the new volume is 25.0 mL