Its location is in the nucleus, because the particle is a proton or a neutron.
Answer:
91.7 kJ
Explanation:
Step 1: Given data
- Mass of ammonia (m): 66.7 g
- Molar heat of vaporization of ammonia (ΔH°vap): 23.4 kJ/mol
Step 2: Calculate the moles (n) corresponding to 66.7 g of ammonia
The molar mass of ammonia is 17.03 g/mol.
66.7 g × 1 mol/17.03 g = 3.92 mol
Step 3: Calculate the heat (Q) required to boil 3.92 moles of ammonia
We will use the following expression.
Q = ΔH°vap × n
Q = 23.4 kJ/mol × 3.92 mol = 91.7 kJ
It is a true fact that ionic crystals are excellent insulators and can hold a large amount of heat before melting or boiling. The correct option among the two options that are given in the question is the first option. Salt is a great example of ionic crystals and we know that it takes a huge amount of time to melt or boil.
Answer:
197 + (35.5×3) = 303.5
Explanation:
relative formula mass is the sum of the relative atomic masses of the atoms in the formula ( AuCl3 )
Out of the options, the best indicator is a color change since it is the only one that can't really be blamed on a physical change. you will eventually notice that during qualitative labs and some quantitative labs, usually the thing that you are looking for is either color change or the production of a precipitate to indicate the presence of a chemical reaction