The answer is : 17.5 liters drained and replaced by 17.5 liters of 100% solution.
x = amount drained and replaced
(70-x) = remaining amount of 20% solution
<span>.20(70-x) + 1.00(x) = .40(70)
14 - .2x + 1x = 28
1x - .2x = 28 - 14
</span><span>.8x = 14
</span><span>x = 14/.8
x= 17,5 ( 17.5 liters drained and replaced by 17.5 liters of 100% solution)
</span>
Answer:
2--->C
6---->E
3---->D
4--->A
5--->B
1---->F
Explanation:
I think so, sorry if its wrong.
Heat and gravity are fundamental to the process
The energy source for plate tectonics is Earth's internal heat while the forces moving the plates are the “ridge push” and “slab pull” gravity forces.
Hope I helped! :)
Answer:
Storage solution; deionized water; stabilizes.
Explanation:
The pH scale measures the concentration of hydrogen ions in acidic and alkaline solutions.
In chemistry, it literally means power of hydrogen ions and it is a measure of the molar concentration of hydrogen ions in a particular solution, thus specifying the acidity, neutrality or basicity of chemical solutions.
Mathematically, the pH of a solution is given by;

Hence, a solution with a pH of 7 is neutral. Also, a solution with a pH below 7 is acidic but basic (alkaline) if it's pH is above 7.
A pH meter can be defined as a scientific instrument or device designed and developed for the measurement of the hydrogen-ion concentration in water-based solutions, in order to determine their level of acidity or alkanility.
When using a pH meter to take a measurement, you should keep it in a storage solution until it is needed. Also, a deionized water should be used to rinse the pH meter and gently pat dry.
Furthermore, the pH meter should be placed in a given sample solution and a reading of the measurement taken when the pH of the solution stabilizes.
Answer:
0.583 kilojoules
Explanation:
The amount of heat required to pop a single kernel can be calculated using the formula as follows:
Q = m × c × ∆T
Where;
Q = amount of heat (J)
m = mass of water (g)
c = specific heat capacity of water (4.184 J/g°C)
∆T = change in temperature
From the given information, m = 0.905 g, initial temperature (room temperature) = 21°C , final temperature = 175°C, Q = ?
Q = m × c × ∆T
Q = 0.905 × 4.184 × (175°C - 21°C)
Q = 3.786 × 154
Q = 583.044 Joules
In kilojoules i.e. we divide by 1000, the amount of heat is:
= 583.04/1000
= 0.583 kilojoules