Answer : The molal freezing point depression constant of liquid X is, 
Explanation : Given,
Mass of urea (solute) = 5.90 g
Mass of liquid X (solvent) = 450 g = 0.450 kg
Molar mass of urea = 60 g/mole
Formula used :

where,
= change in freezing point
= freezing point of solution = 
= freezing point of liquid X = 
i = Van't Hoff factor = 1 (for non-electrolyte)
= Molal-freezing-point-depression constant = ?
m = molality
Now put all the given values in this formula, we get


Therefore, the molal freezing point depression constant of liquid X is, 
<span>Among important crop plants, nitrogen-fixing root nodules are most commonly an attribute of
B) legumes</span>
Traditionally they include boron from group 3A, silicon and germanium in group 4A, aresnic and antimony in group 5A and tellurium from group 6A, although sometimes selenium, astatine, polonium and even bismuth have also been considered as metalloids. Typically metalloids are brittle and show a semi-metallic luster.
The six commonly recognised metalloids are boron, silicon, germanium, arsenic, antimony, and tellurium. Five elements are less frequently so classified: carbon, aluminium, selenium, polonium, and astatine.