It is an inorganic<span> compound
hope this helps
</span>
the traits or characteristics we have, is aquired from both parents, so
correct option is :
D: Genes inherited from both parents
Given data: <span>molar mass = 180.2 g/mol in 920.0 ml of water at 25 °c.
</span><span>the vapor pressure of pure water at 25 °c is 23.76 mm hg.
</span>Asked: <span>the vapor pressure of a solution made by dissolving 109 grams of glucose
</span><span>
Solution:
moles glucose = 109 g/ 180.2 g/mol=0.605
mass water = 920 mL x 1 g/mL = 920 g
moles water = 920 g/ 18.02 g/mol=51.1
mole fraction water = 51.1 / 51.1 + 0.605 =0.988
vapor pressure solution = 0.988 x 23.76 = 23.47 mm Hg</span>
The rate law equation for Ozone reaction
r=k[O][O₂]
<h3>Further e
xplanation</h3>
Given
Reaction of Ozone :.
O(g) + O2(g) → O3(g)
Required
the rate law equation
Solution
The rate law is a chemical equation that shows the relationship between reaction rate and the concentration / pressure of the reactants
For reaction
aA + bB ⇒ C + D
The rate law can be formulated:
![\large{\boxed{\boxed{\bold{r~=~k.[A]^a[B]^b}}}](https://tex.z-dn.net/?f=%5Clarge%7B%5Cboxed%7B%5Cboxed%7B%5Cbold%7Br~%3D~k.%5BA%5D%5Ea%5BB%5D%5Eb%7D%7D%7D)
where
r = reaction rate, M / s
k = constant, mol¹⁻⁽ᵃ⁺ᵇ⁾. L⁽ᵃ⁺ᵇ⁾⁻¹. S⁻¹
a = reaction order to A
b = reaction order to B
[A] = [B] = concentration of substances
So for Ozone reaction, the rate law (first orde for both O and O₂) :
![\tt \boxed{\bold{r=k[O][O_2]}}](https://tex.z-dn.net/?f=%5Ctt%20%5Cboxed%7B%5Cbold%7Br%3Dk%5BO%5D%5BO_2%5D%7D%7D)