Answer:
Zero
Explanation:
Net force can be defined as the vector sum of all the forces acting on a body or an object i.e the sum of all forces acting simultaneously on a body or an object.
Mathematically, net force is given by the formula;
Where;
Fnet is the net force.
Fapp is the applied force.
Fg is the force due to gravitation.
In this scenario, a stalled car is being pushed up a hill at constant velocity by three people. Thus, the net force on the car is zero because all the forces acting on any physical object is equal to zero and represents a constant velocity; by balancing or cancelling each other out.
According to Sir Isaac Newton's First Law of Motion which is known as Law of Inertia, it states that an object or a physical body in motion will continue in its state of motion at continuous velocity (the same speed and direction) or, if at rest, will remain at rest unless acted upon by an external force.
Answer:
Part a)

Part b)

Part c)

Explanation:
As we know that acceleration is rate of change in velocity of the object
So here we know that


Part a)
differentiate x and y two times with respect to time to find the acceleration






Now the acceleration of the object is given as

at t= 1.1 s we have

now the net force of the object is given as



now magnitude of the force will be

Part b)
Direction of the force is given as



Part c)
For velocity of the particle we have




now at t = 1.1 s

now the direction of the velocity is given as



Answer:
The frictional force is 
Explanation:
From the question we are told that
The coefficient of kinetic force is μk = 0.35
The normal force felt by the puck is 
Generally the frictional force that acts on the puck is mathematically represented as

=> 
=> 
The law says things travel in a straight line at constant speed unless acted upon by a force. But friction is a force but it can't be seen easily other than its effect, which is to bring the object to rest in seeming violation of the 1st law.