Answer:
<h2>121ohms</h2>
Explanation:
Formula used for calculating power P = current * voltage
P = IV
From ohms law, V = IR where R is the resistance. Substituting V = IR into the formula for calculating power, we will have;
P = IV
P =(V/R)V
P = V²/R
Given parameters
Power rating of the bulb P = 100 Watts
Source voltage V = 110V
Required
Resistance of the bulb R
Substituting the given parameters into the formula for calculating power to get Resistance R;
P = V²/R
100 = 110²/R
R = 110²/100
R = 110 * 110/100
R = 12100/100
R = 121 ohms
<em>Hence, the resistance of this bulb is 121 ohms</em>
Answer:
delta r(x) = (delta (r)) * cos(alpha), delta r(y) = (delta(r)) * sin(alpha)
Explanation:
Well it's a simple rule I guess...
Answer:
10N
Explanation:
Equation: ΣF = ma
Fapp = ma
Fapp = (2kg)(5m/s^2) (im guessing you mean 5.00 m/s^2 not m/s)
Fapp = 10*kg*m/s^2
Fapp = 10N
Here mass of the iron pan is given as 1 kg
now let say its specific heat capacity is given as "s"
also its temperature rise is given from 20 degree C to 250 degree C
so heat required to change its temperature will be given as



now if we give same amount of heat to another pan of greater specific heat
so let say the specific heat of another pan is s'
now the increase in temperature of another pan will be given as


now we have

now as we know that s' is more than s so the ratio of s and s' will be less than 1
And hence here we can say that change in temperature of second pan will be less than 230 degree C which shows that final temperature of second pan will reach to lower temperature
So correct answer is
<u>A) The second pan would reach a lower temperature.</u>