Answer:
b and e
Step-by-step explanation:
Answer: 8.5%
7/82=0.0853
Multiply by 100 to get percentage
0.0853 x 100 = 8.53
Answer
a. 28˚
b. 76˚
c. 104˚
d. 56˚
Step-by-step explanation
Given,
∠BCE=28° ∠ACD=31° & line AB=AC .
According To the Question,
- a. the angle between a chord and a tangent through one of the end points of the chord is equal to the angle in the alternate segment.(Alternate Segment Theorem) Thus, ∠BAC=28°
- b. We Know The Sum Of All Angles in a triangle is 180˚, 180°-∠CAB(28°)=152° and ΔABC is an isosceles triangle, So 152°/2=76˚
thus , ∠ABC=76° .
- c. We know the Sum of all angles in a triangle is 180° and opposite angles in a cyclic quadrilateral(ABCD) add up to 180˚,
Thus, ∠ACD + ∠ACB = 31° + 76° ⇔ 107°
Now, ∠DCB + ∠DAB = 180°(Cyclic Quadrilateral opposite angle)
∠DAB = 180° - 107° ⇔ 73°
& We Know, ∠DAC+∠CAB=∠DAB ⇔ ∠DAC = 73° - 28° ⇔ 45°
Now, In Triangle ADC Sum of angles in a triangle is 180°
∠ADC = 180° - (31° + 45°) ⇔ 104˚
- d. ∠COB = 28°×2 ⇔ 56˚ , because With the Same Arc(CB) The Angle at circumference are half of the angle at the centre
For Diagram, Please Find in Attachment
As you see in the picture, there are two lines that could maybe represent two linear functions. However, this is not true because of the solid point and the hollow point. This is an inequality equation that has points of discontinuity.
Points of discontinuity are breaks in the graph that are a result of an undefined point when the f(x) is substituted with a point of x that is not part of the solution. So, technically, the graph is made from one rational expression.
So, when it says f(-2), this is the y-value at x=-2. That means f(-2)=2, f(0)=3 and f(4)=-1. Specifically, there are two points at x=0, but we take the solid point only.
The mean deviation of the ratings is 4.12
<em><u>Explanation</u></em>
The ratings of the ten experts are: 34, 35, 41, 28, 26, 29, 32, 36, 38 and 40
So, the mean of all ratings 
<u>The formula for Mean deviation</u>
, where
is the given data from
to
,
is the mean of the data and
is the total number of data. So.....

So, the Mean deviation 