5.27 kJ of heat are required to heat 231 g of gold from 18 °C to 195 °C.
We have 231 g of gold at 18 °C and supply it with heat to increase its temperature to 195 °C. We can calculate the amount of heat required using the following expression.

where,
- <em>c: specific heat capacity of gold</em> (0.129 J/g.°C)
- ΔT: change in the temperature

5.27 kJ of heat are required to heat 231 g of gold from 18 °C to 195 °C.
You can learn more about heating here: brainly.com/question/1105305
They are totally different the Inner core is solid and hotter is made of iron, the outer core is liquid the and is made of iron and nickel
Se2- has 34 protons and 36 electrons so it gets a 2- charge.
Answer:
Explanation:
Diamond has lesser density than platinum . So , if we take equal mass of both , the volume of mass of platinum will be far less .
The density of both diamond and platinum are more than water so both of them will be drowned in water completely . They will not float . On being drowned , platinum will displace lesser volume of water because of its less volume . So volume change in case of platinum mass will be far less . The volume change for diamond will be more because of its bigger size.
The most appropriate answer is C !!