Answer:
4.14 m
Explanation:
In the last leg of the journey the ball covers 2 m in 2ms or 0.2 s .
Let in this last leg , u be the initial velocity.
s = ut + 1/2 g t²
2 = .2 u + .5 x 9.8 x .04
u = 9.02 m /s .
Let v be the final velocity in this leg
v² = u² + 2 g s
v² = (9.02)² + 2 x 9.8 x 2
= 81.36 +39.2
v = 10.97 m / s
Now consider the whole height from where the ball dropped . Let it be h.
Initial velocity u = 0
v² = u² +2gh
(10.97 )² = 2 x 9.8 h
h = 6.14 m
Height from window
= 6.14 - 2m
= 4.14 m
6 / 3 = 2
So the reading on the voltmeter will be 2.
Since the track is friction less, block’s kinetic energy at the bottom of the track is equal to its potential energy at the top of the track.
PE = 81 * 9.8 * 3.8 = 3016.44 J
Work = 1/2 * 1888 * d^2
PE = Kinetic energy at the base.
1/2 * 1888 * d^2 = 3016.44
d = 1.78 approx 1.8
F = Ke = 1888 * 1.8 = 3398.4N
Answer:
4N downward
Explanation:
the 16N left and right cancel each other out, so you are left with the 4N downward.