a. The disk starts at rest, so its angular displacement at time
is

It rotates 44.5 rad in this time, so we have

b. Since acceleration is constant, the average angular velocity is

where
is the angular velocity achieved after 6.00 s. The velocity of the disk at time
is

so we have

making the average velocity

Another way to find the average velocity is to compute it directly via

c. We already found this using the first method in part (b),

d. We already know

so this is just a matter of plugging in
. We get

Or to make things slightly more interesting, we could have taken the end of the first 6.00 s interval to be the start of the next 6.00 s interval, so that

Then for
we would get the same
.
Answer:
(A) ratio of electric force to weight will be 
(b) Electric field will be 
Explanation:
We have given mass of bee = 100 mg = 
Charge on bee 
Electric field E = 100 N/C
Weight of the bee 
Electric force on the bee 
So the ratio of electric force on the bee and weight is 
(B) To hold the bee in air electric force must be equal to weight of bee
So 


Answer:
time taken is equal to 14,156 years
Explanation:
we know,

at t = 0
Y(0) = A
given that half life of plutonium 239 = 24,200



hence time taken is equal to 14,156 years
Answer:
6m/s²
Explanation:
Given parameters:
Initial velocity = 35m/s
Final velocity = 65m/s
Time taken = 5s
Unknown:
Acceleration = ?
Solution:
Acceleration is the rate of change of velocity with time taken;
Acceleration =
So;
Acceleration =
= 6m/s²