The work done by the elephant to lift one log is the force multiplied by the height at which the log has been lifted:

And so, the total work done to lift the 7 logs is 7 times the work done to lift each log:
<span>5.98 x 10^-2 ohms.
Resistance is defined as:
R = rl/A
where
R = resistance in ohms
r = resistivity (given as 1.59x10^-8)
l = length of wire.
A = Cross sectional area of wire.
So plugging into the formula, the known values, including the area of a circle being pi*r^2, gives:
R = 1.59x10^-8 * 3.00 / (pi * (5.04 x 10^-4)^2)
R = (4.77 x 10^-8) / (pi * 2.54016 x 10 ^-7)
R = (4.77 x 10^-8) / (7.98015 x 10^-7)
R = 5.98 x 10^-2 ohms
So that wire has a resistance of 5.98 x 10^-2 ohms.</span>
It’s True the volume is 1k of iron is = 1
To solve this problem we will use the concepts related to Magnification. Magnification is the process of enlarging the apparent size, not physical size, of something. This enlargement is quantified by a calculated number also called "magnification".
The overall magnification of microscope is

Where
N = Near point
l = distance between the object lens and eye lens
= Focal length
= Focal of eyepiece
Given that the minimum distance at which the eye is able to focus is about 25cm we have that N = 25cm
Replacing,


Therefore the correct answer is C.
Answer:
A.model the reflection of a light wave
The Wave Model of Light Toolkit provides teachers with standards-based resources for designing lesson plans and units that pertain to such topics as the light's wavelike behaviors, wave-particle duality, light-wave interference, and light polarization
B. .model the absorption of a light wave
The simplest model is the Drude/Lorentz model, where the light wave makes charged particle oscillate while the particle is also being damped by a force of friction (damping force)
A mirror provides the foremost common model for reflective light wave reflection and generally consists of a glass sheet with a gold coating wherever the many reflections happen. Reflection is increased in metals by suppression of wave propagation on the far side their skin depths
C.model the transmimssion of a light wave
The Wave Model describes how light propagates in the same way as we model ocean waves moving through the water. By thinking of light as an oscillating wave, we can account for properties of light such as its wavelength and frequency. By including wavelength information, the Wave Model can be used to explain colors.
Explanation: