1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sertanlavr [38]
3 years ago
5

Sonya found that x = is one solution of (6x + 4)2

Mathematics
1 answer:
gizmo_the_mogwai [7]3 years ago
6 0
The answer is 16, another answer is 0
You might be interested in
In the triangle below, what is the length of Ac?<br> B<br> 60°<br> 14<br> 60°<br> 60°<br> А<br> с
Katena32 [7]

Answer:

A-14

Step-by-step explanation:

All the angles of the triangle ABC are 60°.

Therefore it is an equilateral triangle.

All sides of an equilateral triangle are equal.

Hence, AC = 14

3 0
3 years ago
Please explain so I know how to do it
Roman55 [17]
The square root of 2 is irrational. Because 2 is not a perfect square therefore the square root of 2 must be irrational. 1.4 is its approximate to the tenths place. I hope this was helpful
6 0
3 years ago
Solve these recurrence relations together with the initial conditions given. a) an= an−1+6an−2 for n ≥ 2, a0= 3, a1= 6 b) an= 7a
8_murik_8 [283]

Answer:

  • a) 3/5·((-2)^n + 4·3^n)
  • b) 3·2^n - 5^n
  • c) 3·2^n + 4^n
  • d) 4 - 3 n
  • e) 2 + 3·(-1)^n
  • f) (-3)^n·(3 - 2n)
  • g) ((-2 - √19)^n·(-6 + √19) + (-2 + √19)^n·(6 + √19))/√19

Step-by-step explanation:

These homogeneous recurrence relations of degree 2 have one of two solutions. Problems a, b, c, e, g have one solution; problems d and f have a slightly different solution. The solution method is similar, up to a point.

If there is a solution of the form a[n]=r^n, then it will satisfy ...

  r^n=c_1\cdot r^{n-1}+c_2\cdot r^{n-2}

Rearranging and dividing by r^{n-2}, we get the quadratic ...

  r^2-c_1r-c_2=0

The quadratic formula tells us values of r that satisfy this are ...

  r=\dfrac{c_1\pm\sqrt{c_1^2+4c_2}}{2}

We can call these values of r by the names r₁ and r₂.

Then, for some coefficients p and q, the solution to the recurrence relation is ...

  a[n]=pr_1^n+qr_2^n

We can find p and q by solving the initial condition equations:

\left[\begin{array}{cc}1&1\\r_1&r_2\end{array}\right] \left[\begin{array}{c}p\\q\end{array}\right] =\left[\begin{array}{c}a[0]\\a[1]\end{array}\right]

These have the solution ...

p=\dfrac{a[0]r_2-a[1]}{r_2-r_1}\\\\q=\dfrac{a[1]-a[0]r_1}{r_2-r_1}

_____

Using these formulas on the first recurrence relation, we get ...

a)

c_1=1,\ c_2=6,\ a[0]=3,\ a[1]=6\\\\r_1=\dfrac{1+\sqrt{1^2+4\cdot 6}}{2}=3,\ r_2=\dfrac{1-\sqrt{1^2+4\cdot 6}}{2}=-2\\\\p=\dfrac{3(-2)-6}{-5}=\dfrac{12}{5},\ q=\dfrac{6-3(3)}{-5}=\dfrac{3}{5}\\\\a[n]=\dfrac{3}{5}(-2)^n+\dfrac{12}{5}3^n

__

The rest of (b), (c), (e), (g) are solved in exactly the same way. A spreadsheet or graphing calculator can ease the process of finding the roots and coefficients for the given recurrence constants. (It's a matter of plugging in the numbers and doing the arithmetic.)

_____

For problems (d) and (f), the quadratic has one root with multiplicity 2. So, the formulas for p and q don't work and we must do something different. The generic solution in this case is ...

  a[n]=(p+qn)r^n

The initial condition equations are now ...

\left[\begin{array}{cc}1&0\\r&r\end{array}\right] \left[\begin{array}{c}p\\q\end{array}\right] =\left[\begin{array}{c}a[0]\\a[1]\end{array}\right]

and the solutions for p and q are ...

p=a[0]\\\\q=\dfrac{a[1]-a[0]r}{r}

__

Using these formulas on problem (d), we get ...

d)

c_1=2,\ c_2=-1,\ a[0]=4,\ a[1]=1\\\\r=\dfrac{2+\sqrt{2^2+4(-1)}}{2}=1\\\\p=4,\ q=\dfrac{1-4(1)}{1}=-3\\\\a[n]=4-3n

__

And for problem (f), we get ...

f)

c_1=-6,\ c_2=-9,\ a[0]=3,\ a[1]=-3\\\\r=\dfrac{-6+\sqrt{6^2+4(-9)}}{2}=-3\\\\p=3,\ q=\dfrac{-3-3(-3)}{-3}=-2\\\\a[n]=(3-2n)(-3)^n

_____

<em>Comment on problem g</em>

Yes, the bases of the exponential terms are conjugate irrational numbers. When the terms are evaluated, they do resolve to rational numbers.

6 0
3 years ago
To sample the average number of pages for the books in the school library, the
sashaice [31]

Answer:

feeefewf

Step-by-step explanation:

fwevf

6 0
3 years ago
Roland needs 8 sheets of fabric that are each 45 yard long.
kompoz [17]

The total number of yards is 360 yards

<h3>How to determine the number of yards?</h3>

The given parameters are:

Number of sheets = 8

Yard per sheet = 45 yards

The total number of yards is calculated as:

Total number of yards = Number of sheets  * Yard per sheet

Substitute the known values in the above equation

Total number of yards = 8 * 45 yards

Evaluate the product

Total number of yards = 360 yards

Hence, the total number of yards is 360 yards

Read more about unit rates at:

brainly.com/question/19493296

#SPJ1

3 0
2 years ago
Other questions:
  • N divided by 3/5=13 1/3
    8·1 answer
  • Help with sentence inequalities? <br> Two times a number x is greater than 3.
    15·1 answer
  • Select the correct answer.<br> Select the graph of the equation below.<br> y = -12 + 1
    6·1 answer
  • Jim bought d donuts at $0.89 each. Write an expression for the total cost of donuts
    9·1 answer
  • Twice a number W, increased by 12
    13·1 answer
  • Below are two parallel lines with a third line intersecting them
    11·1 answer
  • Select all the equations for which (-6, -1) is a solution.
    10·2 answers
  • Rearrange 3x - 6y = -2 to the form y=mx + c
    5·2 answers
  • 721 lbs per week to kg per second please show work
    9·1 answer
  • What is the volume of a triangular prisim if the length is 4cm heigght is 3cm and width is 11cm
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!