Answer:
261.3 m/s
Explanation:
Mass of bullet=m=15 g=
1 kg=1000g
Mass of block=M=3 kg
d=0.086 m
Total mass =M+m=3+0.015=3.015 kg
K.E at the time strike=Gravitational potential energy at the end of swing

Using g=
Substitute the values




Velocity after collision=V=1.3 m/s
Velocity of block=v'=0
Using conservation law of momentum

Using the formula




When you say full valence shell, are you talking about a valence electron shell?
I am learning about atoms and i know a little bit
Answer: 247.67 V
Explanation:
Given
Potential At A 
Potential at 
when particle starts from A it reaches with velocity
at Point while when it starts from C it reaches at point B with velocity 
Suppose m is the mass of Particle
Change in Kinetic Energy of particle moving under the Potential From A to B

Change in Kinetic Energy of particle moving under the Potential From C to B

Divide 1 and 2 we get

on solving we get


High temperature gives the hydrogen atoms enough energy to overcome the electrical repulsion between the protons. Fusion requires temperatures of about 100 million Kelvin (approximately six times hotter than the sun's core).

The conservation of the mass of fluid through two sections (be they A1 and A2) of a conduit (pipe) or current tube establishes that the mass that enters is equal to the mass that exits. Mathematically the input flow must be the same as the output flow,

The definition of flow is given by

Where
V = Velocity
A = Area
The units of the flow of flow are cubic meters per second, that is to say that if there is a continuity, the volume of input must be the same as that of output, what changes if the sections are modified are the proportions of speed.
In this way

