Diffraction patterns are due to interference<span>. Diffraction is a phenomena which occurs when a wave encounters an obstacle. It is the bending of light around the corners if the obstacle.</span>
Answer:
<em> 508Hz</em>
Explanation:
A tuning fork with a frequency of 512 Hz is used to tune a violin. When played together, beats are heard with a frequency of 4 Hz. The string on the violin is tightened and when played again, the beats have a frequency of 2 Hz. The original frequency of the violin was ______.
When two sound waves of different frequency approach your ear, the alternating constructive and destructive interference causes the sound to be alternatively soft and loud - this phenomenon is beat production
frequency is the number of oscillation a wave makes in one seconds.
f1-f2=beats
therefore f1=512Hz
f2=?
beats=4Hz
512Hz-f2=4Hz
f2=512-4
f2=508Hz
the original frequency of the violin is 508Hz
Answer:
a moving object will keep moving if not stopped
the sun being at the center of the solar system
Explanation:
Galileo is known for being the first person make a telescope, there fore being the first person to see that the sun is in the center of the solar system. he also came up with the theory that if something is pushed, it would keep moving until stopped by another force. For example, say you drop your pencil, it keeps falling until it hits the ground. That is exactly what Galileo did in his Leaning Tower of Pisa experiment and found that theory to be true.
Answer is: <span>1/4 its old kinetic energy .
</span>V₁ = 10 m/s.
V₂ = 5 m/s.
m₁ = m₂ = m.
E₁ = 1/2 · m₁ · V₁², E₁ = 1/2 · m · (10 m/s)² = 50 · m.
E₂ = 1/2 · m₂ · V₂², E₂ = 1/2 · m · (5 m/s)² = 12,5 · m.
E₂/E₁ = 12,5m / 50m = 0,25.
V - speed of semi-truck.
m - mass of semi-truck.
E - kinetic energy of semi-truck.
Here’s a good photo to reference when converting in the metric system.
Each time you move down a step you move the decimal to the right, each time you move up a step you move the decimal to the left.
We are going from 1.2 kg or kilograms, which is at the very top left of the ladder. To get to mg or milligrams, we would have to make six jumps, so we’d move the decimal over six times.
1.2 > 12. > 120. > 1200. > 12000. > 120000. > 1200000.
So our final answer would be 1,200,000mg.