We can answer this one very quickly. From the <em>Law of Conservation of Energy</em>, we know that "Energy can't be created or destroyed.".
So that only leaves us one way to complete the sentence in this question:
"One form of energy can be <em>transformed into</em> another type of energy.
" <em>(B)</em>
Answer:
Aloe, Tulsi, Neem, Turmeric, and Ginger are medicinal plants that can help with a variety of diseases. Ginger, green tea, walnuts, aloe, pepper, and turmeric are just a few of these plants. Some plants and their derivatives are key sources of active compounds used in aspirin and toothpaste, among other things.
Explanation:
Plant name: Uses:
1. Marshmallow: //// Relief from aching muscles and pain in muscle, Heals insect bite. ////
2.California poppy //// Relieves tension, Removes nervous system
3. Tulsi //// Cures sore throat, Cures fever and asthma
4. Neem //// Cures skin diseases, Cures diabetics
5. Aloevera //// Heals burns, Relieves constipation
(Hope this helps can I pls have brainlist (crown)☺️)
Answer:
An object's acceleration is the rate its velocity (speed and direction) changes. Therefore, an object can accelerate even if its speed is constant - if its direction changes. If an object's velocity is constant, however, its acceleration will be zero.
Answer:
Initial pressure = 6 atm. Work = 0.144 J
Explanation:
You need to know the equation P1*V1=P2*V2, where P1 is the initial pressure, V1 is the initial volume, and P2 and V2 are the final pressure and volume respectively. So you can rearrange the terms and find that (1.2*0.05)/(0.01) = initial pressure = 6 atm. The work done by the system can be obtained calculating the are under the curve, so it is 0.144J
If you increase the mass of an object and want to move an object a specific distance, then you need to do extra work than the earlier
<h3>What is work done?</h3>
The total amount of energy transferred when a force is applied to move an object through some distance
Work Done = Force * Displacement
For example, let us suppose a force of 10 N is used to displace an object by a displacement of 5 m then the work done on the object can be calculated by the above-mentioned formula
work done = 10 N ×5 m
=50 N m
Thus, when an object's mass is increased and it is desired to move it a certain distance, more work must be done than previously.
Learn more about work done from here
brainly.com/question/13662169
#SPJ1