Ek = (m*V^2) / 2 where m is mass and V is speed, then we can take this equation and manipulate it a little to isolate the speed.
Ek = mv^2 / 2 — multiply both sides by 2
2Ek = mv^2 — divide both sides by m
2Ek / m = V^2 — switch sides
V^2 = 2Ek / m — plug in values
V^2 = 2*30J / 34kg
V^2 = 60J/34kg
V^2 = 1.76 m/s — sqrt of both sides
V = sqrt(1.76)
V = 1.32m/s (roughly)
Answer:
16.96 W
Explanation:
Power: This can be defined as the rate at which work is done by an object. The S.I unit of power is Watt(W).
From the question,
P = (F×d)/t....................... Equation 1
Where P = power, F = force, d = distance, t = time.
Given: F = 75 N, d = 42 m, t = 3.1 min = 3.1×60 = 186 s
Substitute these values into equation 1
P = (75×42)/186
P = 16.94 W
Hence the average power delivered by the child = 16.96 W
Answer:
The angular velocity is slowing down.
Explanation:
- By convention, if a rigid body is rotating clockwise, the angular velocity is negative.
- If the angular acceleration has a positive sign, since the angular acceleration and the angular velocity have opposite signs, this means that the angular velocity is slowing down.
Answer:
A) the maximum acceleration the boulder can have and still get out of the quarry
B) how long does it take to be lifted out at maximum acceleration if it started from rest
Explanation:
A)
let +y is upward. look below at the free body diagram. the mass M refers to the combined mass of the boulder and chain.
the weight of the chain is:
and maximum tension is 
total mass and weight is :


∑



B)
maximum acceleration

using 
to solve for t

