Answer:
v = 120 m/s
Explanation:
We are given;
earth's radius; r = 6.37 × 10^(6) m
Angular speed; ω = 2π/(24 × 3600) = 7.27 × 10^(-5) rad/s
Now, we want to find the speed of a point on the earth's surface located at 3/4 of the length of the arc between the equator and the pole, measured from equator.
The angle will be;
θ = ¾ × 90
θ = 67.5
¾ is multiplied by 90° because the angular distance from the pole is 90 degrees.
The speed of a point on the earth's surface located at 3/4 of the length of the arc between the equator and the pole, measured from equator will be:
v = r(cos θ) × ω
v = 6.37 × 10^(6) × cos 67.5 × 7.27 × 10^(-5)
v = 117.22 m/s
Approximation to 2 sig. figures gives;
v = 120 m/s
Answer:
only reason an object will move in a different direction to the net force on it is because of its prior momentum and it will always accelerate in the direction of the force if thats what u mean.. lol
Explanation:
Answer:
The correct option is (d).
Explanation:
- The energy a particle has because of its charge and its position relative to another particle is called thermal energy.
- It is the energy that comes from heat. This is generated by the movement of the particles in an object.
- Thermal energy is the energy an object or system has due to the movement of particles within.
Hence, the correct option is (d).
According to KE = (3/2)kT
reducing temperature, in KELVIN, by half, average KE is reduced by half.