The distance covered by an object accelerating from rest is
D = (1/2) · (acceleration) · (time)² .
In this particular case, 'acceleration' is 9.8 m/s² ... due to gravity.
D = (1/2) · (9.8 m/s²) · (1.67 s)²
D = (4.9 m/s²) · (2.789 s²)
D = 13.67 meters
A) lighting an electric lamp as it becomes darker
Answer:
.7934
Explanation:
Acceleration = change in velocity / change in time
A = 10.98 / 13.84
A = .7934
Explanation:
It is given that,
Mass of the tackler, m₁ = 120 kg
Velocity of tackler, u₁ = 3 m/s
Mass, m₂ = 91 kg
Velocity, u₂ = -7.5 m/s
We need to find the mutual velocity immediately the collision. It is the case of inelastic collision such that,
v = -1.5 m/s
Hence, their mutual velocity after the collision is 1.5 m/s and it is moving in the same direction as the halfback was moving initially. Hence, this is the required solution.
Answer:
The current through the resistor is 0.5 A
Explanation:
Given;
power of the light bulb = 60 W
voltage in the wall outlet across the plug terminals = 120 V
power of the light bulb is the product of voltage in the wall outlet across the plug terminals and the current passing through the resistor.
power = voltage x current
Therefore, for a 60 W light bulb powered by a connection to a wall outlet with 120 V across the plug terminals, the current passing through the resistor is 0.5 A