Answer:
21 students pass
Step-by-step explanation:
Firstly, you can set up the problem into an equation where the variable X would equal the number of students passing. You put X over the total number of students in the class, turning it into a fraction, then set it equal to the fraction
(which is 75% represented as a fraction).

The fraction
can be simplified, because 75 and 100 are both multiples of 25, so after canceling out the 25s you would be left with
.

Next, you use the process of cross multiplication which is essentially just multiplying the denominators of both fractions (which would be 28 and 4 in this case) to each side of the equation.

The denominators cancel out leaving you with a simple equation to simplify.


Finally, divide both sides by four in order to isolate the variable.

X = 21.
The area between the two functions is 0
<h3>How to determine the area?</h3>
The functions are given as:
f₁(x)= 1
f₂(x) = |x - 2|
x ∈ [0, 4]
The area between the functions is
A = ∫[f₂(x) - f₁(x) ] dx
The above integral becomes
A = ∫|x - 2| - 1 dx (0 to 4)
When the above is integrated, we have:
A = [(|x - 2|(x - 2))/2 - x] (0 to 4)
Expand the above integral
A = [(|4 - 2|(4 - 2))/2 - 4] - [(|0 - 2|(0 - 2))/2 - 0]
This gives
A = [2 - 4] - [-2- 0]
Evaluate the expression
A = 0
Hence, the area between the two functions is 0
Read more about areas at:
brainly.com/question/14115342
#SPJ1