Answer:
the resistance of the second wire is 1 ohm.
Explanation:
Given;
cross sectional area of the first wire, A₁ = 5.00 x 10⁶ m²
resistance of the first wire, R₁ = 1.75 ohms
cross sectional area of the second wire, A₂ = 8.75 x 10⁶ m²
resistance of the second wire, R₂ = ?
The resistance of a wire is given as;
R ∝ 
Since the length of the two wires is constant
R₁A₁ = R₂A₂

Therefore, the resistance of the second wire is 1 ohm.
<h3><u>Answer;</u></h3>
The above statement is False
<h3><u>Explanation;</u></h3>
- Decreased output from the vasomotor center allows arterioles and veins to dilate.
- The vasomotor center controls vessel tone or contraction of the smooth muscle in the tunica media.It is responsible for central regulation of cardiac electrical activity, myocardial performance, and peripheral vascular tone.
- Changes in diameter affect peripheral resistance, pressure, and flow, which in turn affect cardiac output.
Answer:
Resistance to electrical currents
Explanation:
Conductors have low resistance to electrical currents, and are used to "conduct" the flow of electricity.
Insulators have very high resistance and are used to protect us from the flow of electricity.
Answer:
see that there is no dependence on speed, so the work remains constant
Explanation:
Work is defined by the expression
W = F. d
where the boldface indicates vectors, this equation can be written in scalar form
W = f d cos θ
where θ is the angle between force and displacement.
We see that there is no dependence on speed, so the work remains constant
The power is
P = W / t
P = f d / t
p = F v
we see that the power is the one that depends on the speed of the body
The correct answer for this question is this one: C) 2.5s. T<span>he period and frequency of a water wave if 4.0 complete waves pass a fixed point in 10 seconds is that 2.5 s
</span>
Here are the following choices:
<span>A) 0.25s
B) 0.40s
C) 2.5s
D) 4.0s</span>