Answer:
The change in momentum is
Explanation:
From the question we are told that
The mass of the probe is 
The location of the prob at time t = 22.9 s is 
The momentum at time t = 22.9 s is
The net force on the probe is 
Generally the change in momentum is mathematically represented as

The initial time is 22.6 s
The final time is 22.9 s
Substituting values

The hawk’s centripetal acceleration is 2.23 m/s²
The magnitude of the acceleration under new conditions is 2.316 m/s²
radius of the horizontal arc = 10.3 m
the initial constant speed = 4.8 m/s
we know that the centripetal acceleration is given by
= 
= 23.04/10.3
= 2.23 m/s²
It continues to fly but now with some tangential acceleration
= 0.63 m/s²
therefore the net value of acceleration is given by the resultant of the centripetal acceleration and the tangential acceleration
so
= 
= 
= 2.316 m/s²
So the magnitude of net acceleration will become 2.316 m/s².
learn more about acceleration here :
brainly.com/question/11560829
#SPJ4
Answer:
<h2>C. maintenance </h2>
Explanation:
I personally believe one key disadvantages is the cost of maintaining the equipment unlike the gym where you have to subscribe for the month or the year and forget about anything, owning the gym equipment comes with the extra cost and responsibilities of maintenance to the owners.
Answer:
1317.4 m
Explanation:
We are given that
Angle=
Initial speed =
We have to find the horizontal distance covered by the shell after 5.03 s.
Horizontal component of initial speed=
Vertical component of initial speed=
Time=t=5.03 s
Horizontal distance =
Using the formula
Horizontal distance=
Horizontal distance=1317.4 m
Hence, the horizontal distance covered by the shell=1317.4 m