<h2>Given :</h2>
<h2>Solution :</h2>

_____________________________

Answer:
a
The focal length of the lens in water is 
b
The focal length of the mirror in water is 
Explanation:
From the question we are told that
The index of refraction of the lens material = 
The index of refraction of the medium surrounding the lens = 
The lens maker's formula is mathematically represented as
![\frac{1}{f} = (n -1) [\frac{1}{R_1} - \frac{1}{R_2} ]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bf%7D%20%3D%20%28n%20-1%29%20%5B%5Cfrac%7B1%7D%7BR_1%7D%20-%20%5Cfrac%7B1%7D%7BR_2%7D%20%20%5D)
Where
is the focal length
is the index of refraction
are the radius of curvature of sphere 1 and 2 of the lens
From the question When the lens in air we have
![\frac{1}{f_{air}} = (n-1) [\frac{1}{R_1} - \frac{1}{R_2} ]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bf_%7Bair%7D%7D%20%3D%20%28n-1%29%20%5B%5Cfrac%7B1%7D%7BR_1%7D%20-%20%5Cfrac%7B1%7D%7BR_2%7D%20%20%5D)
When immersed in liquid the formula becomes
![\frac{1}{f_{water}} = [\frac{n_2}{n_1} - 1 ] [\frac{1}{R_1} - \frac{1}{R_2} ]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bf_%7Bwater%7D%7D%20%3D%20%5B%5Cfrac%7Bn_2%7D%7Bn_1%7D%20-%201%20%5D%20%5B%5Cfrac%7B1%7D%7BR_1%7D%20-%20%5Cfrac%7B1%7D%7BR_2%7D%20%20%5D)
The ratio of the focal length of the the two medium is mathematically evaluated as
![\frac{f_water}{f_{air}} = \frac{n_2 -1}{[\frac{n_2}{n_1} - 1] }](https://tex.z-dn.net/?f=%5Cfrac%7Bf_water%7D%7Bf_%7Bair%7D%7D%20%3D%20%5Cfrac%7Bn_2%20-1%7D%7B%5B%5Cfrac%7Bn_2%7D%7Bn_1%7D%20-%201%5D%20%7D)
From the question
= 79.0 cm

and the refractive index of water(material surrounding the lens) has a constant value of 


b
The focal length of a mirror is dependent on the concept of reflection which is not affected by medium around it.
Answer:
All these statement are true
Explanation:
Gravity will be acting like a centripetal force for the circular motion of object around earth, which makes it perpendicular to the velocity vector. In the case of elliptical motion, gravity can still be divided into 2 vectors, one parallel and the other perpendicular to the velocity. At the nearest point in elliptical motion, gravity is directly perpendicular to velocity just like in circular motion. At the farthest point, the potential energy is minimized and has been converted into kinetic energy. Therefore at this point the speed is greatest.
You might want to visit this website
https://www.nedcc.org/free-resources/preservation-leaflets/4.-storage-and-handling/4.1-storage-metho...