Answer:
0.0623 ± ( 2.056 )( 0.0224 ) can be used to compute a 95% confidence interval for the slope of the population regression line of y on x
Step-by-step explanation:
Given the data in the question;
sample size n = 28
slope of the least squares regression line of y on x or sample estimate = 0.0623
standard error = 0.0224
95% confidence interval
level of significance ∝ = 1 - 95% = 1 - 0.95 = 0.05
degree of freedom df = n - 2 = 28 - 2 = 26
∴ the equation will be;
⇒ sample estimate ± ( t-test) ( standard error )
⇒ sample estimate ± (
) ( standard error )
⇒ sample estimate ± (
) ( standard error )
⇒ sample estimate ± (
) ( standard error )
{ from t table; (
) = 2.055529 = 2.056
so we substitute
⇒ 0.0623 ± ( 2.056 )( 0.0224 )
Therefore, 0.0623 ± ( 2.056 )( 0.0224 ) can be used to compute a 95% confidence interval for the slope of the population regression line of y on x
Multiply the numbers being added then add the first number. 4X1=4, 4+1=5.
2X5=10, 10+2=12. 11X8=88, 88+8=96. I'm not sure how to get 40, though.
Hope I could help.
Answer:
No
Step-by-step explanation:
Plug in the x and y values and you should get 3<9
<h2><em><u>
**Please rate 5 give thanks and vote brainliest**</u></em></h2>