Answer:
a block sliding down a ramp,a leaf blowing across a field
Water equal to iron is greater than cooper
Answer:
(d) a net external force must be acting on the system
Explanation:
Momentum is given as the product of mass and velocity.
P = MV
According to Newton's second law of motion, " Force applied to a body (system) is directly proportional to the rate of change of momentum of the body (system) which takes place in the direction of the applied force (external force).
F ∝ΔMV
Therefore, If the total momentum of a system is changing, a net external force must be acting on the system.
(d) a net external force must be acting on the system
Answer:

Explanation:
Angular acceleration is defined by 
Angular velocity is related to the period by 
Putting all together:

Taking our initial (i) point now and our final (f) point one year later, we would have:



So for our values we have:

Where the minus sign indicates it is decelerating.