(1) The linear acceleration of the yoyo is 3.21 m/s².
(2) The angular acceleration of the yoyo is 80.25 rad/s²
(3) The weight of the yoyo is 1.47 N
(4) The tension in the rope is 1.47 N.
(5) The angular speed of the yoyo is 71.385 rad/s.
<h3> Linear acceleration of the yoyo</h3>
The linear acceleration of the yoyo is calculated by applying the principle of conservation of angular momentum.
∑τ = Iα
rT - Rf = Iα
where;
- I is moment of inertia
- α is angular acceleration
- T is tension in the rope
- r is inner radius
- R is outer radius
- f is frictional force
rT - Rf = Iα ----- (1)
T - f = Ma -------- (2)
a = Rα
where;
- a is the linear acceleration of the yoyo
Torque equation for frictional force;

solve (1) and (2)

since the yoyo is pulled in vertical direction, T = mg 
<h3>Angular acceleration of the yoyo</h3>
α = a/R
α = 3.21/0.04
α = 80.25 rad/s²
<h3>Weight of the yoyo</h3>
W = mg
W = 0.15 x 9.8 = 1.47 N
<h3>Tension in the rope </h3>
T = mg = 1.47 N
<h3>Angular speed of the yoyo </h3>
v² = u² + 2as
v² = 0 + 2(3.21)(1.27)
v² = 8.1534
v = √8.1534
v = 2.855 m/s
ω = v/R
ω = 2.855/0.04
ω = 71.385 rad/s
Learn more about angular speed here: brainly.com/question/6860269
#SPJ1
Answer:
The kinetic energy of bocce ball is more.
Explanation:
Given that,
Mass of a bowling ball, m₁ = 4 kg
Speed of the bowling ball, v₁ = 1 m/s
Mass of bocce ball, m₂ = 1 kg
Speed of bocce ball, v₂ = 4 m/s
We need to say which has more kinetic energy.
The kinetic energy of an object is given by :

Kinetic energy of the bowling ball,

The kinetic energy of the bocce ball,

So, the kinetic energy of bocce ball is more than that of bowling ball.
A hypothesis is an educated prediction that can be tested.
Rainbows are caused by the dispersion of light, which itself consists of a combination of refraction and reflection of light around little droplets of water.
Choice C
Answer: 148348.6239 kg•m/s
Explanation: Firstly, we need to convert the 14700 N into kilograms, and to do so, use the formula net force is equal to mass times acceleration and rearrange the formula to find mass like shown below...
F = ma
F/a = m
14700/9.81 = 1498.470948 kg, this is your mass
Now that we convert it into kilograms, plug all the numbers into the variable of the momentum formula.
Momentum formula is P = mass x velocity
Like this:
P = 1498.470948 x 99
p = 148348.6239 kg•m/s.
I believe that is your answer, hope that helps you even a bit out.
Thanks.