You are running at constant velocity in the x direction, and based on the 2D definition of projectile motion, Vx=Vxo. In other words, your velocity in the x direction is equal to the starting velocity in the x direction. Let's say the total distance in the x direction that you run to catch your own ball is D (assuming you have actual values for Vx and D). You can then use the range equation, D= (2VoxVoy)/g, to find the initial y velocity, Voy. g is gravitational acceleration, -9.8m/s^2. Now you know how far to run (D), where you will catch the ball (xo+D), and the initial x and y velocities you should be throwing the ball at, but to find the initial velocity vector itself (x and y are only the components), you use the pythagorean theorem to solve for the hypotenuse. Because you know all three sides of the triangle, you can also solve for the angle you should throw the ball at, as that is simply arctan(y/x).
Answer:
(a) 
(b) P = 0.816 Watt
Explanation:
(a)
The power radiated from a black body is given by Stefan Boltzman Law:

where,
P = Energy Radiated per Second = ?
σ = stefan boltzman constant = 5.67 x 10⁻⁸ W/m².K⁴
T = Absolute Temperature
So the ratio of power at 250 K to the power at 2000 K is given as:

(b)
Now, for 90% radiator blackbody at 2000 K:

<u>P = 0.816 Watt</u>
Answer:
Avoid downed power lines and stay away from buildings and bridges from which heavy objects might fall during an aftershock. Stay away until local officials tell you it is safe. A tsunami is a series of waves that may continue for hours. Do not assume that after one wave the danger is over.
Forces are exerted I believe : all of the above
The action force might be Tyler throwing the ball
I don't know the last one