Answer:
9.9 m/s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s²

If the body has started from rest then the initial velocity is 0. In order to find the velocity just before hitting the water then the distance at which the downward motion stops is irrelevant.
Hence, the speed of the diver just before striking the water is 9.9 m/s
<span>g = GMe/Re^2, where Re = Radius of earth (6360km), G = 6.67x10^-11 Nm^2/kg^2, and Me = Mass of earth. On the earth's surface, g = 9.81 m/s^2, so the radius of your orbit is:
R = Re * sqrt (9.81 m/s^2 / 9.00 m/s^2) = 6640km
here, the speed of the satellite is:
v = sqrt(R*9.00m/s^2) = 7730 m/s
the time it would take the satellite to complete one full rotation is:
T = 2*pi*R/v = 5397 s * 1h/3600s = 1.50 h
Hope it help i know it's long and may be confusing but if you have any more questions regarding this topic just hmu! :)</span>
If we are being specific, the inner core has the highest density, but if not then the core in general
Answer:
In both cases, energy will move from an area of higher temperature to an area of lower temperature. So, the energy from room-temperature air will move into the cold water, which warms the water.
Explanation: