1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yan [13]
3 years ago
9

What is the value of the expression when a+10 when a=6

Mathematics
2 answers:
atroni [7]3 years ago
7 0
Substitute.

a+10
6+10
=16.
Artist 52 [7]3 years ago
4 0
Plug in 6 for a (since we are told a=6) 
6+10=16 <---add 
Answer 16 
You might be interested in
An oil exploration company currently has two active projects, one in asia and the other in europe. let a be the event that the a
elena-s [515]
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB                    
6 0
3 years ago
The base of an aquarium with given volume V is made of slate and the sides are made of glass. If the slate costs seven times as
Olin [163]

Answer:

x = ∛(2V/7)

y = ∛(2V/7)

z = 3.5 [∛(2V/7)]

{x,y,z} = { ∛(2V/7), ∛(2V/7), 3.5[∛(2V/7)] }

Step-by-step explanation:

The aquarium is a cuboid open at the top.

Let the dimensions of the base of the aquarium be x and y.

The height of the aquarium is then z.

The volume of the aquarium is then

V = xyz

Area of the base of the aquarium = xy

Area of the other faces = 2xz + 2yz

The problem is to now minimize the value of the cost function.

The cost of the area of the base per area is seven times the cost of any other face per area.

With the right assumption that the cost of the other faces per area is 1 currency units, then, the cost of the base of the aquarium per area would then be 7 currency units.

Cost of the base of the aquarium = 7xy

cost of the other faces = 2xz + 2yz

Total cost function = 7xy + 2xz + 2yz

C(x,y,z) = 7xy + 2xz + 2yz

We're to minimize this function subject to the constraint that

xyz = V

The constraint can be rewritten as

xyz - V = 0

Using Lagrange multiplier, we then write the equation in Lagrange form

Lagrange function = Function - λ(constraint)

where λ = Lagrange factor, which can be a function of x, y and z

L(x,y,z) = 7xy + 2xz + 2yz - λ(xyz - V)

We then take the partial derivatives of the Lagrange function with respect to x, y, z and λ. Because these are turning points and at the turning point, each of the partial derivatives is equal to 0.

(∂L/∂x) = 7y + 2z - λyz = 0

λ = (7y + 2z)/yz = (7/z) + (2/y) (eqn 1)

(∂L/∂y) = 7x + 2z - λxz = 0

λ = (7x + 2z)/xz = (7/z) + (2/x) (eqn 2)

(∂L/∂z) = 2x + 2y - λxy = 0

λ = (2x + 2y)/xy = (2/y) + (2/x) (eqn 3)

(∂L/∂λ) = xyz - V = 0

We can then equate the values of λ from the first 3 partial derivatives and solve for the values of x, y and z

(eqn 1) = (eqn 2)

(7/z) + (2/y) = (7/z) + (2/x)

(2/y) = (2/x)

y = x

Also,

(eqn 1) = (eqn 3)

(7/z) + (2/x) = (2/y) + (2/x)

(7/z) = (2/y)

z = (7y/2)

Hence, at the point where the box has minimal area,

y = x,

z = (7y/2) = (7x/2)

We can then substitute those into the constraint equation for y and z

xyz = V

x(x)(7x/2) = V

(7x³/2) = V

x³ = (2V/7)

x = ∛(2V/7)

y = x = ∛(2V/7)

z = (7x/2) = 3.5 [∛(2V/7)]

The values of x, y and z in terms of the volume that minimizes the cost function are

{x,y,z} = {∛(2V/7), ∛(2V/7), 3.5[∛(2V/7)]}

Hope this Helps!!!

7 0
3 years ago
HELP ME PLEASE <br> True or false: z=−5 is a solution to the inequality −2|z−3|&lt;−20.
Dovator [93]

<em><u>your </u></em><em><u>question</u></em><em><u>:</u></em><em><u> </u></em>

<em>True or false: z=−5 is a solution to the inequality −2|z−3|<−20.</em>

<em><u>answer:</u></em><em><u> </u></em>

<em>-</em><em>2</em><em>|</em><em>z-3|</em><em><</em><em>-</em><em>2</em><em>0</em>

<em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>. </em><em> </em><em> </em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em>

<em> </em><em> </em><em> </em><em>-</em><em>2</em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>-</em><em>2</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>|</em><em>z-3|</em><em><</em><em>1</em><em>0</em><em> </em>

<em>equation </em><em>1</em><em>:</em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>equation </em><em>2</em><em>:</em><em> </em>

<em>z-3<</em><em>1</em><em>0</em><em>. </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>z-3></em><em>-</em><em>1</em><em>0</em><em> </em>

z<13 z>-13

<em>So </em><em>false, </em><em>z=</em><em>-</em><em>5</em><em> </em><em>is </em><em>not </em><em>a </em><em>solution </em><em>to the </em><em>inequality</em><em>.</em>

<em>hope </em><em>this </em><em>helps, </em><em>have </em><em>a </em><em>great </em><em>day! </em><em>:</em><em>)</em>

7 0
3 years ago
The world population at the beginning of 1980 was 4.5 billion. Assuming that the population continued to grow at the rate of app
AfilCa [17]

Answer:

Q(t) = 4.5(1.013)^{t}

The world population at the beginning of 2019 will be of 7.45 billion people.

Step-by-step explanation:

The world population can be modeled by the following equation.

Q(t) = Q(0)(1+r)^{t}

In which Q(t) is the population in t years after 1980, in billions, Q(0) is the initial population and r is the growth rate.

The world population at the beginning of 1980 was 4.5 billion. Assuming that the population continued to grow at the rate of approximately 1.3%/year.

This means that Q(0) = 4.5, r = 0.013

So

Q(t) = Q(0)(1+r)^{t}

Q(t) = 4.5(1.013)^{t}

What will the world population be at the beginning of 2019 ?

2019 - 1980 = 39. So this is Q(39).

Q(t) = 4.5(1.013)^{t}

Q(39) = 4.5(1.013)^{39} = 7.45

The world population at the beginning of 2019 will be of 7.45 billion people.

6 0
3 years ago
Select the correct answer.
xxTIMURxx [149]
C , the little 5 at the top represents how many times 7 is multiplied.
4 0
3 years ago
Other questions:
  • How many lines of symmetry does this figure have?
    8·2 answers
  • Divide ratio <br><br> £360 in the ratio 1 : 8
    8·1 answer
  • Given, Q =x^b/x^c<br> If Q=1 then proof that b=c
    8·1 answer
  • Jessica's meal cost $19.64 and Derrick's meal cost $32.40. Derrick pays for both meals, and leave a 15% tip. What is the total c
    14·2 answers
  • How many like terms are in the expression?
    11·2 answers
  • Consider the experiment of rolling two standard (six-sided) dice and taking their sum. Assume that each die lands on each of its
    11·1 answer
  • Please help slope!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    11·1 answer
  • your sister is selling girl scout cookies that cost $4.25 a box. your family bought 6 boxes. how many more boxes of cookies must
    12·1 answer
  • What is three hundred and sixty plus one
    15·2 answers
  • What is the slope of a line that is parallel to the line whose equation is y=4/5x-3
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!