It describes the relationship between force and acceleration
Answer:
resistance of the metal conductor at different temperature
Explanation:
The area of the Earth that is most similar to the Sun's convection zone would be the mantle. The convection zone of the sun is its outermost layer where heat transfer by convection happens which is similar to the Earth's mantle. It would be the crust because it is the outer most layer.
Answer:

Explanation:



Electron information needed to solve the question:






![E=\frac{9.11x10{-31}kg*3.0x10^{12}m/s^2}{-1.6x10{-19}C}-[(19.0x10^3mj+18.0x10^3m)xi(400x10^{-6}T)]](https://tex.z-dn.net/?f=E%3D%5Cfrac%7B9.11x10%7B-31%7Dkg%2A3.0x10%5E%7B12%7Dm%2Fs%5E2%7D%7B-1.6x10%7B-19%7DC%7D-%5B%2819.0x10%5E3mj%2B18.0x10%5E3m%29xi%28400x10%5E%7B-6%7DT%29%5D)
![E=-i17.08N/C-[7.6(-k)+7.2(j)]N/C](https://tex.z-dn.net/?f=E%3D-i17.08N%2FC-%5B7.6%28-k%29%2B7.2%28j%29%5DN%2FC)

Answer:
a) ΔV = 25.59 V, b) ΔV = 25.59 V, c) v = 7 10⁴ m / s, v/c= 2.33 10⁻⁴ ,
v/c% = 2.33 10⁻²
Explanation:
a) The speed they ask for electrons is much lower than the speed of light, so we don't need relativistic corrections, let's use the concepts of energy
starting point. Where the electrons come out
Em₀ = U = e DV
final point. Where they hit the target
Em_f = K = ½ m v2
energy is conserved
Em₀ = Em_f
e ΔV = ½ m v²
ΔV =
mv²/e (1)
If the speed of light is c and this is 100% then 1% is
v = 1% c = c / 100
v = 3 10⁸/100 = 3 10⁶6 m/ s
let's calculate
ΔV =
ΔV = 25.59 V
b) Ask for the potential difference for protons with the same kinetic energy as electrons
K_p = ½ m v_e²
K_p =
9.1 10⁻³¹ (3 10⁶)²
K_p = 40.95 10⁻¹⁹ J
we substitute in equation 1
ΔV = Kp / M
ΔV = 40.95 10⁻¹⁹ / 1.6 10⁻¹⁹
ΔV = 25.59 V
notice that these protons go much slower than electrons because their mass is greater
c) The speed of the protons is
e ΔV = ½ M v²
v² = 2 e ΔV / M
v² =
v² = 49,035 10⁸
v = 7 10⁴ m / s
Relation
v/c = 
v/c= 2.33 10⁻⁴