<u>Answer:</u>
<u>For A:</u> The
for the given reaction is 
<u>For B:</u> The
for the given reaction is 1642.
<u>Explanation:</u>
The given chemical reaction follows:

The expression of
for the above reaction follows:

We are given:

Putting values in above equation, we get:

Hence, the
for the given reaction is 
Relation of
with
is given by the formula:

where,
= equilibrium constant in terms of partial pressure = 
= equilibrium constant in terms of concentration = ?
R = Gas constant = 
T = temperature = 500 K
= change in number of moles of gas particles = 
Putting values in above equation, we get:

Hence, the
for the given reaction is 1642.
72g H2O x 1 mol H2O/18.02g H2O = 3.99 mol H2O
There are two molecular orbitals in the CH2O or formaldehyde. These are designated by the two types of bonding involved. The first is the sigma bonding. It is the head-on overlap of electrons of the C and H atoms. The second molecular orbital is formed from the pi orbital bonding. This is a sideway overlap of electrons between C-O bonding.
Calcium carbonate has the formula: CaCO3
From the periodic table:
mass of calcium = 40 grams
mass of carbon = 12 grams
mass of oxygen = 16 grams
Therefore,
molar mass of CaCO3 = 40 + 12 + 3(16) = 100 grams
molar mass of carbonate = 12 + 3(16) = 60 grams
One mole of calcium carbonate contains one mole of carbonate. Therefore, 100 grams of CaCO3 contains 60 grams of CO3.
If the 0.5376 grams of the unknown substance is CaCO3, then the amount of carbonate will be:
amount of carbonate = (0.5376*60) / 100 = 0.32256 grams
Based on the above calculations, the sample is not CaCO3