Answer:
Work done, W = 128 kJ
Explanation:
Given that,
Weight of a mountain climber, F = 800 N
It climbs to a cliff that is 160 m high.
We need to find the work done by the mountain climber. The work done by an object is given by the formula as follows :
W = Fd
Put the values of F and d.
W = 800 N × 160 m
W = 128000 J
or
W = 128 kJ
So, 128 kJ of work is done by the mountain climber.
Methanoic acid has a molecular formula of HCOOH, when form an ester it's HCOO-, so the rest of the ester is -C4H9, a saturated 4 carbon chain. As shown in the attached diagram, there are 4 structural isomers, and the third isomer has 2 stereoisomers. So the answers is D:5.
Cost per mole
Table salt : Rs 0.878
Table sugar : Rs 23.63
<h3>Further explanation</h3>
Given
Cost table salt (NaCl) = 15/kg
Cost table sugar(sucrose-C12H22O11) = 69/kg
Required
cost per mole
Solution
mol of 1 kg Table salt(NaCl ,MW= 58.5 g/mol) :

mol of 1 kg Table sugar(C12H22O11 ,MW= 342 g/mol) :

States of Matter
Gases, liquids and solids are all made up of microscopic particles, but the behaviors of these particles differ in the three phases.
Note that:
Particles in a:
gas are well separated with no regular arrangement.
liquid are close together with no regular arrangement.
solid are tightly packed, usually in a regular pattern.
Particles in a:
gas vibrate and move freely at high speeds.
liquid vibrate, move about, and slide past each other.
solid vibrate (jiggle) but generally do not move from place to place.
Liquids and solids are often referred to as condensed phases because the particles are very close together.
The following table summarizes properties of gases, liquids, and solids and identifies the microscopic behavior responsible for each property.
Some Characteristics of Gases, Liquids and Solids and the Microscopic Explanation for the Behavior
gas liquid solid
assumes the shape and volume of its container
particles can move past one another assumes the shape of the part of the container which it occupies
particles can move/slide past one another retains a fixed volume and shape
rigid - particles locked into place
compressible
lots of free space between particles not easily compressible
little free space between particles not easily compressible
little free space between particles
flows easily
particles can move past one another flows easily
particles can move/slide past one another