Answer:
719.83°C
Explanation:
The heat that the sample of Zinc gives is equal to the heat that water is absorbing. That is:
C(Zn) * m(Zn) * ΔT(Zn) = C(H2O) * m(H2O) * ΔT(H2O)
<em>Where:</em>
<em>C is specific heat (Zn: 0.390J/g°C; H2O: 4.184J/g°C)</em>
<em>m is mass (Zn: 2.50g; H2O: 65.0g)</em>
<em>ΔT (Zn: ?; H2O: (22.5°C - 20.0°C = 2.50°C)</em>
<em />
Replacing:
0.390J/g°C * 2.50g * ΔT(Zn) = 4.184J/g°C * 65.0g * 2.50
ΔT(Zn) = 697.33°C
As final temperature of Zn is 22.50°C, initial temperature is:
Initial temperature: 697.33°C + 22.50°C
719.83°C
<em />
Answer:
to VSEPR theory, the shape of a molecule is related to the organization of the central atom's valence shell electrons. The valence shell electrons are all negatively charged and therefore are constantly repelling each other. This repulsion is what gives a molecule its three-dimensional shape.
Explanation:
bbdjsjakkakajdjehejkskssjsjjanzbh
please report me :/
<span>The nitartion of methyl benzoate is expected to proceed as given in the equation below:
</span>
In methyl benzoate there are 3 types of 1 H proton. The two ortho to the C=O group is a doublet at 8 ppm the 2 metal to the C=O is a multiple at 7.5 ppm and one para to the C=O is a multiplet at 7.5 ppm.
On nitration the ortho will probably show two signal one being a single with 3 proton integration and one a doublet with 1 H integration
The meta will show a highly down field singlet (coresponding to 1 proton), two unequal doublets (corresponding to 1 H each) and one multiplets (corresponding to 1H). This is the major product as seen from the 1H NMR.
The para isomer will come as two doublets which will be very close to each other there is a small signal for this set between 8.2 and 8.3 ppm.
Answer:
1. C+ ---- O-
2. O+ ---- Cl-
3. O+ ----- F-
4. C+ ----- N-
5. Cl- ----- C+
6. S- ----- H+
7. S+ ----- Cl -
Explanation:
Electronegativity determines the polarity . There may be two atoms in a bond with high electronegativity, in such cases the positive charge is given to atom with comparatively lower electronegativity. Electronegativity determines the easiness with which an atom attract electrons in a chemical bond. A polar bond is formed when the difference in the electronegativity of two combining atoms is between 0.4 and 1.7. The correct direction is
1. C+ ---- O-
2. O+ ---- Cl-
3. O+ ----- F-
4. C+ ----- N-
5. Cl- ----- C+
6. S- ----- H+
7. S+ ----- Cl -