Answer:
Approximately 6.81 × 10⁵ Pa.
Assumption: carbon dioxide behaves like an ideal gas.
Explanation:
Look up the relative atomic mass of carbon and oxygen on a modern periodic table:
Calculate the molar mass of carbon dioxide
:
.
Find the number of moles of molecules in that
sample of
:
.
If carbon dioxide behaves like an ideal gas, it should satisfy the ideal gas equation when it is inside a container:
,
where
is the pressure inside the container.
is the volume of the container.
is the number of moles of particles (molecules, or atoms in case of noble gases) in the gas.
is the ideal gas constant.
is the absolute temperature of the gas.
Rearrange the equation to find an expression for
, the pressure inside the container.
.
Look up the ideal gas constant in the appropriate units.
.
Evaluate the expression for
:
.
Apply dimensional analysis to verify the unit of pressure.
Answer:
5 L
Explanation:
Given data
- Initial pressure (P₁): 1 atm
- Initial volume (V₁): 2.5 L
- Final pressure (P₂): 0.50 atm
For a gas, there is an inverse relationship between the pressure and the volume. Mathematically, for an ideal gas that undergoes an isothermic change, this is expressed through Boyle's law.

Answer:
9.2 L is the average volume should the chemical engineer report.
Explanation:
Volume of pollutant from Cross creek plants 10.88 L
Volume of pollutant from Oglala plants = 0.92 L
Volume of pollutant from Platte plants = 15.82 L
Average volume pollutants will be given by :

9.2 L is the average volume should the chemical engineer report.