Personally, I agree with your answer, namely that the likely-intended event happening here is one of acceleration. Having said that, I also want to add: it pains me to see this type of wording because, clearly, it is vague and only invites confusion of the type you are talking about.
Good luck!
Newton’s second law gives us the relationship of force F,
mass m and acceleration a. The formula is given as:
<span>F = m a -->
1</span>
However we also know that the relationship of mass m,
density ρ, and volume V is:
<span>m = V ρ -->
2</span>
Therefore substituting equation 2 to equation 1:
F = ρ V a = ρ V g
where a is acceleration due to gravity, ρ is density of
water and V is the volume of the casting, therefore:
F = (1x10^-3 kg/cm^3) (4840 cm^3) (9.8 m/s^2)
F = 47.432 kg m/s^2
F = 47.432 N
Going back to equation 1:
47.432 N = m (9.8 m/s^2)
m = 4.84 kg
<span>Hence the weight of the final casting is 4.84 kg</span>
Answer:
yea that is very true ◠﹏◠✿
Explanation:
The object is in free fall when and only when it is being affected by gravity alone. It is not being influenced by a significant amount of air resistance will always be in free fall. F(net)/m = acceleration
Answer/Explanation:
Acceleration is the rate of change of the velocity of an object that is moving. This value is a result of all the forces that is acting on an object which is described by Newton's second law of motion. Calculation of such is straightforward, if we are given the final velocity, the initial velocity and the total time interval. We can just use the kinematic equations. Fortunately, we are given these values. So, we calculate as follows:
acceleration = v - v0 / t
acceleration = (80 mph - 50 mph) ( 1 h / 3600) / 5 s
acceleration = 1.67 x 10^-3 m / s^2