Answer
Applying Wein's displacement

1) for sun T = 5800 K


2) for tungsten T = 2500 K


3) for heated metal T = 1500 K


4) for human skin T = 305 K


5) for cryogenically cooled metal T = 60 K


range of different spectrum
UV ----0.01-0.4
visible----0.4-0.7
infrared------0.7-100
for sun T = 5800
λ 0.01 0.4 0.7 100
λT 58 2320 4060 5.8 x 10⁵
F 0 0.125 0.491 1
fractions
for UV = 0.125
for visible = 0.441-0.125 = 0.366
for infrared = 1 -0.491 = 0.509
Answer:
The speed of the shell at launch and 5.4 s after the launch is 13.38 m/s it is moving towards the Earth.
Explanation:
Let u is the initial speed of the launch. Using first equation of motion as :

a=-g

The velocity of the shell at launch and 5.4 s after the launch is given by :

So, the speed of the shell at launch and 5.4 s after the launch is 13.38 m/s it is moving towards the Earth.
The layers form from sand dunes
They hit the ground at the same time
Answer:
a) 90 kJ
b) 230.26 kJ
Explanation:
The pressure at the first point
= 10 bar —> 10 x 102 = 1020 kPa
The volume at the first point
= 0.1 m^3
The pressure at the second point
= 1 bar —> 1 x 102 = 102 kPa
The volume at the second point
= 1 m^3
Process A.
constant volume V = C from point (1) to P = 10 bar.
Constant pressure P = C to the point (2).
Process B.
The relation of the process is PV = C
Required
For process A & B
(a) Sketch the process on P-V coordinates
(b) Evaluate the work W in kJ.
Assumption
Quasi-equilibrium process
Kinetic and potential effect can be ignored.
Solution
For process A.
V=C
There is no change in volume then

The work is defined by

║
V║limit 1--0.1
90 kJ
Process B
PV=C
By substituting with point (1) C = 10^2 x 1= 10^2
The work is defined by

║
ln(V)║limit 1--0.1
=230.26 kJ