Answer:
221754385964.9123
Explanation:
Convert miles to nanometer
1 mile = 1.6 km
1 km = 1×10³×10³×10³×10³ nm
1 mile = 1.6×10¹² nm
So,
158 miles = 158×1.6×10¹² = 252.8×10¹² nm
Length of each molecule = 1140 nm
Number of molecules = Total length / Length of each molecule

There are 221754385964.9123 number of molecules in a stretch of 158 miles
Answer:
ΔU = 5.21 × 10^(10) J
Explanation:
We are given;
Mass of object; m = 1040 kg
To solve this, we will use the formula for potential energy which is;
U = -GMm/r
But we are told we want to move the object from the Earth's surface to an altitude four times the Earth's radius.
Thus;
ΔU = -GMm((1/r_f) - (1/r_i))
Where;
M is mass of earth = 5.98 × 10^(24) kg
r_f is final radius
r_i is initial radius
G is gravitational constant = 6.67 × 10^(-11) N.m²/kg²
Since, it's moving to altitude four times the Earth's radius, it means that;
r_i = R_e
r_f = R_e + 4R_e = 5R_e
Where R_e is radius of earth = 6371 × 10³ m
Thus;
ΔU = -6.67 × 10^(-11) × 5.98 × 10^(24)
× 1040((1/(5 × 6371 × 10³)) - (1/(6371 × 10³))
ΔU = 5.21 × 10^(10) J
Acceleration = (velocity final-velocity initial)/ time
where
velocity final = 135 km/hr x 1 hr /3600 s x 1000m/1km
= 37.5 m/s
velocity initial = 35 km/hr x 1hr /3600 s x 1000 m/1 km
= 9.72 m/s
a) acceleration = 2.646 m/s^2
b) acceleration in g units = (2.646m/s^2)/(9.8m/s^2)
= 0.27 units
Answer:
reflection and refraction?
Explanation:
XOXO
Kit
Answer:
Pine cone 2 does, the more mass an object has, the more kinetic energy is has.
Explanation:
Brainliest Please?