Answer:
θ = 10.28º
Explanation:
To find the angle of refraction use the equation of refraction
n₁ sin θ₁ = n₂ sin θ₂
where index 1 is for incident light and index 2 is for refracted light.
sin θ₂ = n₁ / n₂ sin θ
let's calculate
sin = 1 / 1.3 sin 0.23
sin = 0.175
θ= 0.17528 rad
let's reduce to degrees
θ = 0.17528 rad (180ª / pi rad)
θ = 10.28º
1,3 and 5 are the answers
I think the correct answers from the choices listed above are options 1, 5 and 7. Angular momentum quantum number determine the energy of an orbital, the shape of the orbital and <span>the overall size of an orbital. Hope this answers the question.</span>
Using the constant acceleration formula v^2 = u^2 + 2as, we can figure out that it would take a distance of 193.21m to reach 27.8m/s
Answer:
40 km/h
Explanation:
First...
Look at the formula speed is equal to the distance over time or s = d/t.
Next...
Use the formula: 240/6.0
Finally...
Solve: 40
So the answer: 40 km/h