When an atom of the element lithium (Li) transfers an electron to an atom of the element fluorine (F), then the bond results between the atoms is ionic bond.
<h3>what is chemical bond? </h3>
A chemical bond is defined as the bond which holds atoms together in molecules.
Bonds arise due to the electrostatic forces present between positively charged atomic nuclei and negatively charged electrons.
<h3>Types of chemical bond</h3>
- Ionic bond
- Covalent bond
- Coordinate bond
<h3>What is Ionic bond ? </h3>
Ionic bond is defined as the transfer of electron from one atom to another atom.
Since, electron transfer from lithium to fluroine. Thus lithium get positive charge and fluorine occupy negative charge.
Thus, the bond form between lithium atom and fluorine atom is ionic bond.
learn more about ionic bond:
brainly.com/question/977324
#SPJ1
Answer:
1.d = 2.70 g/mL
2.d = 13.6 g/mL
4.d = 1896 g / 212.52 cm3 = 8.9 g/cm3
Explanation:If this helped subscribe to Amiredagoat Yt
Answer:
they have delocolised electrons which can carry electrical charges through the metals.
Explanation:
<span>Sulfur Hexachloride
SCl6 So now we count the number of valence electrons each has by seeing what column it's in, (1-8) not counting the columns of the transition metals.
Since Sulfur is in the 6th and Chlorine is in the 7th, and there are 6 chlorines, we can add up all their valence electrons:
6*1+7*6=48 valence electrons.
But remember that electrons come in pairs, either in bonds or as lone pairs. So I usually divide the valence electron number by 2 and just think about placing pairs. It's up to you, but I think it's convenient since we can count "1" in our mind each time we place a bond or a electron pair. So we need to place 24 pairs/bonds.
So we can guess that sulfur is a central atom and draw out a bond from sulfur to each chlorine. Since Sulfur is in the 3rd row it can use d-orbitals to break the octet rule. So when we bond all the chlorines onto sulfur we get:
(see the figure)
and
</span><span>So we made 6 bonds, that means we used up 12 electrons, so if you're counting (AND YOU SHOULD BE!) you have 36 electrons or simply 18 electron pairs left to place. Now let's give chlorine a neutral charge.</span>