Yeas, the reaction is balanced
The empirical formula of Lorelai's compound is C₄H₁₀O
<h3>Data obtained from the question</h3>
- C = 64.8 g
- H = 13.62 g
- O = 21.58 g
- Empirical formula =?
<h3>How to determine the empirical formula</h3>
Divide by their molar mass
C = 64.8 / 12 = 5.4
H = 13.62 / 1 = 13.62
O = 21.58 / 16 = 1.35
Divide by the smallest
C = 5.4 / 1.35 = 4
H = 13.62 / 1.35 = 10
O = 1.35 / 1.35 = 1
Thus, the empirical formula of the compound is C₄H₁₀O
Learn more about empirical formula:
brainly.com/question/24297883
#SPJ1
Answer:
They're called Jovian planets
Answer:
Qsp > Ksp, BaCO3 will precipitate
Explanation:
The equation of the reaction is;
Na2CO3 + BaBr2 -------> 2NaBr + BaCO3
Since BaCO3 may form a precipitate we can determine the Qsp of the system.
Number of moles of Na2CO3 = 0.96g/106 g/mol = 9.1 * 10^-3 moles
concentration of NaCO3 = number of moles/volume of solution = 9.1 * 10^-3 moles/10 L = 9.1 * 10^-4 M
Number of moles of BaBr2 = 0.20g/297 g/mol = 6.7 * 10^-4 moles
concentration of BaBr2 = 6.7 * 10^-4 moles/10 L = 6.7 * 10^-5 M
Hence;
[Ba^2+] = 6.7 * 10^-5 M
[CO3^2-] = 9.1 * 10^-4 M
Qsp = [6.7 * 10^-5] [9.1 * 10^-4]
Qsp = 6.1 * 10^-8
But, Ksp for BaCO3 is 5.1*10^-9.
Since Qsp > Ksp, BaCO3 will precipitate