Answer:
Time take to deposit Ni is 259.02 sec.
Explanation:
Given:
Current
A
Faraday constant

Molar mass of Ni

Mass of Ni
g
First find the no. moles in Ni solution,
Moles of Ni 
mol
From the below reaction,
⇆ 
Above reaction shows "1 mol of
requires 2 mol of electron to form 1 mol of
"
So for finding charge flow in this reaction we write,

Charge flow
C
For finding time of reaction,

Where
charge flow


sec
Therefore, time take to deposit Ni is 259.02 sec.
In a closed system, heat should be conserved which means that the heat produced in the calorimeter is equal to the heat released by the combustion reaction. We calculate as follows:
Heat of the combustion reaction = mC(T2-T1)
= 1 (1.50) (41-21)
= 30 kJ
Answer:
a. CH3NH2(aq) + H⁺ → CH3NH3⁺
Explanation:
The mixture of a weak base as CH3NH2 with its conjugate acid CH3NH3Cl produce a buffer. As the weak acid is in equilibrium with water, the mixture of the weak base and its conjugate base produce that the acid or base released react avoiding the change in pH.
For example, when a strong acid as HNO3 reacts, the weak base will react producing the conjugate base, that is:
CH3NH2(aq) + H⁺ → CH3NH3⁺
Right answer is:
<h3>a. CH3NH2(aq) + H⁺ → CH3NH3⁺</h3>
An an increase in
temperature lead to more effective collisions between reactant particles and an
increase in the rate of a chemical reaction because the number of
molecules with sufficient energy to react increases. The answer is number 3.
Answer:
<h2>10 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

m is the mass
f is the force
From the question
mass = 3.5 kg
force = 35 N
We have

We have the final answer as
<h3>10 m/s²</h3>
Hope this helps you