<span>Scientists with NASA's Cassini mission have spotted "Pac-Man" images on moons of Saturn, Mimas & Tethys. The image in Mimas was seen in the year 2010, while in Tethys in the year 2011. The pattern appears in thermal data taken by Cassini's infrared spectrometer, with the warmer areas making up the Pac-Man shape. </span>
The magnitude of the orbital angular momentum of the electron is doubled when the radius of the electron orbit increases by a factor of four.
<h3>
What is orbital angular momentum?</h3>
The orbital angular momentum is the sum of angular momenta of all electrons, it is the rotational analog of the linear momentum.
The formula of angular momentum

Thus, the magnitude of the orbital angular momentum of the electron is doubled when the radius of the electron orbit increases by a factor of four.
Learn more about orbital angular momentum
brainly.com/question/1435774
#SPJ4
Answer:
Sr²⁺
Explanation:
Krypton has 36 electrons and an electron configuration of 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6. An ion with a charge of 2+ and 36 electrons is Sr²⁺. Since it has the same amount of electrons, Sr²⁺ also has an electron configuration of 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6.
Answer:
![K=K_1*K_2\\\\K=\frac{[H_2]^3[CO_2][H_2]}{[CH_4][H_2O][H_2O]}](https://tex.z-dn.net/?f=K%3DK_1%2AK_2%5C%5C%5C%5CK%3D%5Cfrac%7B%5BH_2%5D%5E3%5BCO_2%5D%5BH_2%5D%7D%7B%5BCH_4%5D%5BH_2O%5D%5BH_2O%5D%7D)
Explanation:
Hello there!
In this case, for the given chemical reaction, it turns out firstly necessary to write the equilibrium expression for both reactions 1 and 2:
![K_1=\frac{[CO][H_2]^3}{[CH_4][H_2O]} \\\\K_2=\frac{[CO_2][H_2]}{[CO][H_2O]}](https://tex.z-dn.net/?f=K_1%3D%5Cfrac%7B%5BCO%5D%5BH_2%5D%5E3%7D%7B%5BCH_4%5D%5BH_2O%5D%7D%20%5C%5C%5C%5CK_2%3D%5Cfrac%7B%5BCO_2%5D%5BH_2%5D%7D%7B%5BCO%5D%5BH_2O%5D%7D)
Now, when we combine them to get the overall expression, we infer these two are multiplied to get:
![K=K_1*K_2\\\\K=\frac{[CO][H_2]^3}{[CH_4][H_2O]} *\frac{[CO_2][H_2]}{[CO][H_2O]}\\\\K=\frac{[H_2]^3[CO_2][H_2]}{[CH_4][H_2O][H_2O]}](https://tex.z-dn.net/?f=K%3DK_1%2AK_2%5C%5C%5C%5CK%3D%5Cfrac%7B%5BCO%5D%5BH_2%5D%5E3%7D%7B%5BCH_4%5D%5BH_2O%5D%7D%20%2A%5Cfrac%7B%5BCO_2%5D%5BH_2%5D%7D%7B%5BCO%5D%5BH_2O%5D%7D%5C%5C%5C%5CK%3D%5Cfrac%7B%5BH_2%5D%5E3%5BCO_2%5D%5BH_2%5D%7D%7B%5BCH_4%5D%5BH_2O%5D%5BH_2O%5D%7D)
Regards!
Answer:
The sun'll likely absorb the radiation if it is close enough (Which it will never be)
Explanation: