Answer:
1 mole of Al2O3 = 102 grams
1 mole of Al2 = 54 grams
102 grams of Al2O3 contains = 54 gram of Al2
10kg of Al2O3 contains = (54/102)*10000g Al2
= 5294.11 g Al2 or 5.29411 kg
Answer:
Both
Explanation:
The combined gas law is also known as the general gas law.
From the ideal gas law we assume that n = 1;
So;
PV = nRT
and then;
=
If we cross multiply;
P₁V₁T₂ = P₂V₂T₁
So;
T₁ = 
Also;
V₂ = 
So from the choices both are correct
<h3>
Answer:</h3>
2.809 L of H₂SO₄
<h3>
Explanation:</h3>
Concept tested: Moles and Molarity
In this case we are give;
Mass of solid sodium hydroxide as 13.20 g
Molarity of H₂SO₄ as 0.235 M
We are required to determine the volume of H₂SO₄ required
<h3>First: We need to write the balanced equation for the reaction.</h3>
- The reaction between NaOH and H₂SO₄ is a neutralization reaction.
- The balanced equation for the reaction is;
2NaOH + H₂SO₄ → Na₂SO₄ + 2H₂O
<h3>Second: We calculate the umber of moles of NaOH used </h3>
- Number of moles = Mass ÷ Molar mass
- Molar mass of NaOH is 40.0 g/mol
Moles of NaOH = 13.20 g ÷ 40.0 g/mol
= 0.33 moles
<h3>Third: Determine the number of moles of the acid, H₂SO₄</h3>
- From the equation, 2 moles of NaOH reacts with 1 mole of H₂SO₄
- Therefore, the mole ratio of NaOH: H₂SO₄ is 2 : 1.
- Thus, Moles of H₂SO₄ = moles of NaOH × 2
= 0.33 moles × 2
= 0.66 moles of H₂SO₄
<h3>Fourth: Determine the Volume of the acid, H₂SO₄ used</h3>
- When given the molarity of an acid and the number of moles we can calculate the volume of the acid.
- That is; Volume = Number of moles ÷ Molarity
In this case;
Volume of the acid = 0.66 moles ÷ 0.235 M
= 2.809 L
Therefore, the volume of the acid required to neutralize the base,NaOH is 2.809 L.
Answer:
It is called Ionization Energy.
The Difference Between Science, Engineering, and Technology. Science is the study of the natural world as it is; engineering is creating new tools, devices, and processes based on scientific knowledge; technology is the sum total of all the engineered tools, devices and processes available.