Electron - negligible mass, negative charge, orbits the nucleus
Proton - 1 AMU, positive charge, in the nucleus
Neutron, 1 AMU, no charge, in the nucleus
Answer:
1: At temperatures below 542.55 K
2: At temperatures above 660 K
Explanation:
Hello there!
In this case, according to the thermodynamic definition of the Gibbs free energy, it is possible to write the following expression:

Whereas ΔG=0 for the spontaneous transition. In such a way, we proceed as follows:
1:

It means that at temperatures lower than 542.55 K the reaction will be spontaneous.
2:

It means that at temperatures higher than 660 K the reaction will be spontaneous.
Best regards!
Answer:
0.0187 M
Explanation:
Step 1: Write the balanced neutralization reaction
NaOH + HCl ⇒ NaCl + H₂O
Step 2: Calculate the reacting moles of HCl
18.7 mL of 0.01500 M HCl react.
0.0187 L × 0.01500 mol/L = 2.81 × 10⁻⁴ mol
Step 3: Calculate the reacting moles of NaOH
The molar ratio of HCl to NaOH is 1:1. The reacting moles of NaOH are 1/1 × 2.81 × 10⁻⁴ mol = 2.81 × 10⁻⁴ mol.
Step 4: Calculate the molarity of NaOH
2.81 × 10⁻⁴ moles are in 15.00 mL of NaOH.
[NaOH] = 2.81 × 10⁻⁴ mol/0.01500 L = 0.0187 M
Fe(s) + CuSO4(aq) -> Cu(s) + FeSO4(aq) is the answer if you get it in advance...