The mass of ore required is
21 700 t.
r = 750 cm
V =

=

= 1.767 × 10⁹ cm³
The density of lead is 11.34 g/cm³.
So mass of lead sphere = 1.767 × 10⁹ cm³ ×

= 2.004 ×10¹⁰ g
2.004 ×10¹⁰ g ×

= 2.004 × 10⁷ kg
2.004 × 10⁷ kg ×

= 2.004 × 10⁴ t
92.5% efficiency means 92.5 t Pb per 100 t of ore.
Mass of ore = 2.004 × 10⁴ t Pb ×

= 2.17 × 10⁴ t ore = 21 700 t ore
Answer:
21.86582KJ
Explanation:
The graphical form of the Arrhenius equation is shown on the image attached. Remember that in the Arrhenius equation, we plot the rate constant against the inverse of temperature. The slope of this graph is the activation energy and its y intercept is the frequency factor.
Applying the equation if a straight line, y=mx +c, and comparing the given equation with the graphical form of the Arrhenius equation shown in the image attached, we obtain the activation energy of the reaction as shown.
Answer:
The atomic mass of gallium (Ga) = <u>69.723 g/mol</u>
Explanation:
Given: Two isotopes of Gallium (Ga) are Gallium-69 (⁶⁹Ga) and Gallium-71 (⁷¹Ga)
<u>For ⁶⁹Ga: </u>
Relative abundance = 60.12% = 60.12 ÷ 100 = 0.6012; Atomic mass = 68.9257 g/mol
<u>For ⁷¹Ga:</u>
Relative abundance = 39.88% = 39.88 ÷ 100 = 0.3988; Atomic mass = 70.9249 g/mol
∴ The atomic mass of Ga = (Relative abundance of ⁶⁹Ga × Atomic mass of ⁶⁹Ga) + (Relative abundance of ⁷¹Ga × Atomic mass of ⁷¹Ga)
⇒ Atomic mass of Ga = (0.6012 × 68.9257 g/mol) + (0.3988 × 70.9249 g/mol) = <u>69.723 g/mol</u>
<u>Therefore, the atomic mass of gallium (Ga) = 69.723 g/mol</u>
Answer:
mirrors and metal thermometers
Explanation:
ooga booga
Molal or molar? There is a difference