Answer:
The answer to your question is 245 grams
Explanation:
Data
Volume 6.5 L
Molarity = 0.34
mass of CaCl₂ = ?
Process
1.- Calculate the molar mass of CaCl₂
molar mass = (1 x 40) + (2 x 35.5)
= 40 + 71
= 111 g
2.- Convert the grams to moles
111 g of CaCl₂ -------------- 1 mol
x ---------------0.34 mol
x = (0.34 x 111) / 1
x = 37.74 g
3.- Calculate the total mass
37.74 g ------------------ 1 L
x ------------------ 6.5 L
x = (6.5 x 37.74) / 1
x = 245.31
Answer: Benzaldahyde
Explanation: the C₆H₅- represents the substituted benzene ring and the
CHO should represent the functional group of aldehyde
Answer:
built a special cavity where the electromagnetic quantum states resonate with the natural vibrations of the atoms. In doing so, one cancouple a photon-based oscillator to a mechanical oscillator, controlling the mechanical quantum states with visible light. The result is a prototype of a quantum transducer, a device that converts light energy into mechanical energy (sound energy)
Explanation:
Sound energy is created by vibrating particles of medium that propagates as a wave. So in order to convert light (electromagnetic wave) to sound wave it has to be converted into electric or magnetic signals. Then these signals can be converted into sound waves.
However, if you consider the particle nature of light. It contains momentum and after collision sets the other particles into oscillatory motion but the wavelength of these vibrations is too high to be considered as sound waves.
Answer:
Height = 1.9493 cm
Width = 1.9493 cm
Depth = 1.9493 cm
Solution:
Data Given:
Mass = 20 g
Density = 2.7 g/mL
Step 1: Calculate the Volume,
As,
Density = Mass ÷ Volume
Or,
Volume = Mass ÷ Density
Putting values,
Volume = 20 g ÷ 2.7 g/mL
Volume = 7.407 mL or 7.407 cm³
Step 2: Calculate Dimensions of the Cube:
As we know,
Volume = length × width × depth
So, we will take the cube root of 7.407 cm³ which is 1.9493 cm.
Hence,
Volume = 1.9493 cm × 1.9493 cm × 1.9493 cm
Volume = 7.407 cm³
Answer:
B
Explanation:
The average kinetic energy of the Substance changes.