b. 460.8 m/s
Explanation:
The relationship between the speed of the wave along the string, the length of the string and the frequency of the note is

where v is the speed of the wave, L is the length of the string and f is the frequency. Re-arranging the equation and substituting the data of the problem (L=0.90 m and f=256 Hz), we can find v:

c. 18,000 m
Explanation:
The relationship between speed of the wave, distance travelled and time taken is

where
v = 6,000 m/s is the speed of the wave
d = ? is the distance travelled
t = 3 s is the time taken
Re-arranging the formula and substituting the numbers into it, we find:

Answer:
A 3 feet radius snowball will melt in 54 hours.
Explanation:
As we can assume that the rate of snowball takes to melt is proportional to the surface area, then the rate for a 3 feet radius will be:
T= A(3 ft)/A(1 ft) * 6 hr
A is the area of the snowballs. For a spherical geometry is computing as:
A=4.pi.R^2
Then dividing the areas:
A(3 feet)/A(1 foot) = (4 pi (3 ft)^2)/(4 pi (1 ft)^2) = (36pi ft^2)/(4pi ft^2)= 9
Finally, the rate for the 3 feet radius snowball is:
T= 9 * 6 hr = 54 hr
The rate of altitude increase is equivalent to the vertical component of the pilot's velocity. Let the first pilot's velocity be A and the second's be B.
Ay = Asin(∅)
Ay = 400sin(30)
Ay = 200 mph
By = Bsin(∅)
By = 300sin(40)
By = 192.8 mph
200 - 192.8 = 7.2 mph
The first pilot gains altitude faster by 7.2 mph than the second pilot.
Answer:
A limestone plateau has no surface water. All the water is pulled underground through cracks and crevices in the surface. What most likely will cause the underground of the plateau to change over time?
Physical weathering due to frost wedging
Physical weathering due to abrasion
Chemical weathering due to oxygen
Chemical weathering due to water Correct Answer
Explanation: