Ok, assuming "mj" in the question is Megajoules MJ) you need a total amount of rotational kinetic energy in the fly wheel at the beginning of the trip that equals
(2.4e6 J/km)x(300 km)=7.2e8 J
The expression for rotational kinetic energy is
E = (1/2)Iω²
where I is the moment of inertia of the fly wheel and ω is the angular velocity.
So this comes down to finding the value of I that gives the required energy. We know the mass is 101kg. The formula for a solid cylinder's moment of inertia is
I = (1/2)mR²
We want (1/2)Iω² = 7.2e8 J and we know ω is limited to 470 revs/sec. However, ω must be in radians per second so multiply it by 2π to get
ω = 2953.1 rad/s
Now let's use this to solve the energy equation, E = (1/2)Iω², for I:
I = 2(7.2e8 J)/(2953.1 rad/s)² = 165.12 kg·m²
Now find the radius R,
165.12 kg·m² = (1/2)(101)R²,
√(2·165/101) = 1.807m
R = 1.807m
Answer:
The formula to find the diameter states the relationship between the diameter and the radius. The diameter is made up of two segments that are each a radius. Therefore, the formula is: Diameter = 2 * the measurement of the radius. You can abbreviate this formula as d=2r.
Explanation:
Answer:
the sun's heat affects humidity of how warm the air feels to us.
i tried
Answer:
B. X-rays
Explanation:
From the given choices, x-rays will have the highest energy of the given waves.
The energy of electromagnetic waves is highly dependent on their frequency and wavelength.
Electromagnetic waves with a high frequency and small wavelength will have higher energy compared to those with low frequency and high wavelength.
X-rays are one the most energetic waves on the periodic table. They have a very high frequency and low wavelength.
Answer:
For a relative frequency distribution, relative frequency is computed as the class frequency divided by the number of observations.