By Newton's 2nd law of motion, F = ma, where F is force, m is mass, and a is acceleration.
Rearranging this equation to find acceleration would give us:
a = F/m
The horizontal force to the right is 10N, because the box is pushed to the right with a force of 20N, and the friction force of 10N opposes that, so:
20N - 10N = 10N
The mass is 2kg.
Putting these values into the equation gives us:
a = F/m
= 10/2
= 5ms^-2
The acceleration of the box is 5ms^-2
C. one complete spin on its axis because the rotation is referring to the planet's period of rotation. D is called a revolution. B determines the seasons on the planets. A is called an ellipse.
Answer:
the average speed of the swimmer is 0.069 m/s.
Explanation:
Given;
complete distance around the park pine, d = 25 m
total lap completed, = 20 laps
time of laps completion, t = 7200 s
The total distance completed by the swimmer = 20 x 25 = 500 m
The average speed of the swimmer = distance / time
= (500 m) / (7200 s)
= 0.069 m/s.
Therefore, the average speed of the swimmer is 0.069 m/s.
The answer would be 187.95 kg.m/s.
To get the momentum, all you have to do is multiply the mass of the moving object by the velocity.
p = mv
Where:
P = momentum
m = mass
v = velocity
Not the question is asking what is the total momentum of the football player and uniform. So we need to first get the combined mass of the football player and the uniform.
Mass of football player = 85.0 kg
Mass of the uniform = <u> 4.5 kg</u>
TOTAL MASS 89.5 kg
So now we have the mass. So let us get the momentum of the combined masses.
p = mv
= (89.5kg)(2.1m/s)
= 187.95 kg.m/s